A new strategy for fabricating glucose biosensor was presented by layer-by-layer assembled chitosan (CS)/gold nanoparticles (GNp)/glucose oxidase (GOD) multilayer films modified Pt electrode. First, a cleaned Pt electrode was immersed in poly(allylamine) (PAA), and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/PAA/Pt). Second, the GOD/GNp/PAA/Pt electrode was immersed in CS, and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/CS/GOD/GNp/PAA/Pt). Third, different layers of multilayer films modified Pt electrodes were assembled by repeating the second process. Film assembling and characterization were studied by quart crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The results confirmed that the assembling process of multilayer films was simple to operate, the immobilized GOD displayed an excellent catalytic property to glucose, and GNp in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. The amperometric response of the biosensors uniformly increased from one to six layers of multilayer films, and then reached saturation after the seven layers. Among the resulting biosensors, the biosensor based on the six layers of multilayer films was best. It showed a wide linear range of 0.5-16 mM, with a detection limit of 7.0 microM estimated at a signal-to-noise ratio of 3, fast response time (within 8s). Moreover, it exhibited good reproducibility, long-term stability and interference free. This method can be used for constructing other thin films, which is a universal immobilization method for biosensor fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2006.03.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!