The interaction between PAMAM (polyamidoamine) dendrimer generation 4 (G4) and 3,5 (G3,5) with model lipid membranes composed of dipalmytoylphosphatidylcholine (DPPC) has been investigated. Differential scanning calorimetry (DSC) and Raman spectroscopy were applied to assess the thermodynamic changes caused by PAMAM G4 and G3,5 and to specify the exact location of these dendrimers into the DPPC lipid bilayer. DSC thermograms indicated that the maximum percentages of PAMAM G4 and of G3,5 that can be incorporated in the DPPC membrane without deranging its integrity were 5% and 3%, respectively. The Raman intensity ratios I(2935/2880), I(2844/2880) and I(1090/1130) cm(-1) showed the degree of the fluidity of the lipid bilayer, while the absorption at 715 cm(-1) showed a strong interaction of PAMAM G4 and G3,5 with the polar head group of phospholipid. The results showed that the incorporation of the PAMAM G4 and G3,5 dendrimers in DPPC bilayers causes a concentration dependent increase of the membrane fluidity and that the bilayers interact strongly with both the lipophilic part and the polar head group of the phospholipids. Due to the current weak knowledge relating to the mechanism(s) under which dendrimers interact with lipidic membranes and transport through cells, these results may justify the tendency of dendrimers to disrupt biological membranes. The findings from this study could also prove helpful to rationally design new liposomal drug carriers for bioactive molecules by combining dendrimeric and liposomal technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2006.03.023 | DOI Listing |
Biomaterials
November 2011
Departments of Medicine, Infectious Diseases & Immunity, Imperial College London at Hammersmith Hospital, Ducane Road, London W12 ONN, UK.
The cell surface interaction between bacterial lipopolysaccharide (LPS), Toll-like receptor 4 (TLR4) and MD-2 is central to bacterial sepsis syndromes and wound healing. We have shown that a generation (G) 3.5 polyamidoamine (PAMAM) dendrimer that was partially glycosylated with glucosamine inhibits TLR4-MD-2-LPS induced inflammation in a rabbit model of tissue scaring.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
May 2011
University of Athens, School of Pharmacy, Department of Pharmaceutical Technology, Panepistimioupolis, Zografou, 15771 Athens, Greece.
Chimeric advanced Drug Delivery nano Systems (chi-aDDnSs) could be defined as mixed nanosystems due to the combination process of nanobiomaterials and can offer advantages as drug carriers. The role of the release modulator from the liposomal system is undertaken by the dendrimer molecules leading to new pharmacokinetic and, probably, pharmacological properties of the chimeric system. In this work, a conventional DOPC/DPPG liposomal system and a new chi-aDDnS composed of liposomes (DOPC/DPPG) incorporating PAMAM G3,5 has been developed, Doxorubicin (Dox) was loaded in the systems and the final formulations were lyophilized.
View Article and Find Full Text PDFBioconjug Chem
October 2010
Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA.
In this work, carboxyl-terminated PAMAM G-3.5 was covalently attached to SN38 via glycine and β-alanine spacers. The conjugates were stable at pH 7.
View Article and Find Full Text PDFInt J Pharm
August 2010
Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, United States.
Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in vitro, in vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 microg of generation-4 neutral dendrimer (G(4)-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2005
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Gold-silver binary nanoparticles, which feed atomic ratios of gold to silver were 3:1, 1:1, and 1:3, were prepared. These particles were stabilized by amine-terminated (generation (G) 3.0 and 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!