Background: We tested a preemptive combined cell/gene therapy strategy of skeletal myoblasts transfected with Ad(5)RSVVEGF-165 in an ischemia/reperfusion rat model to increase collateral blood flow to nonischemic heart tissue.

Methods: Lewis rats were injected with placebo (Control), 10(6) skeletal myoblasts (SkM), or 10(6) skeletal myoblasts transfected with Ad(5)RSVVEGF-165 (SkM(+)) into the left ventricle 1week before ischemia. Left ventricle end-diastolic pressure, scar area, and capillary density were assessed 4weeks later.

Results: Local expression of human vascular endothelial growth factor was accompanied by an increase in capillary density in the SkM(+) group compared with that in the SkM and Control groups (700+/-40 vs. 289+/-18 and 318+/-59capillaries/mm(2), respectively; p<0.05). After 3weeks, the myocardial scar area was reduced in SkM(+) vs. Control (5.3+/-0.4% and 14.8+/-1.6%, p<0.05), while injected cells alone (SkM) did not cause improvement compared with Control (11.8+/-2.1% vs. 14.8+/-1.6%, p>0.05). The decrease in the scar area in SkM(+) was accompanied by an increase in the capillary density compared with that in SkM and Control 30days after cell injection (1005+/-108 vs. 524+/-16 and 528+/-26capillaries/mm(2), respectively; p<0.05). The scar areas were discrete (5.3-14.8%) and left ventricle end-diastolic pressure in all groups were comparable (p>0.05).

Conclusions: The combined cell/gene therapy strategy of genetically modified myoblast cells expressing angiogenic factors injected into the myocardium induced capillary formation and prevented the extension and development of cardiac damage associated with ischemia/reperfusion in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2005.11.060DOI Listing

Publication Analysis

Top Keywords

skeletal myoblasts
12
myoblasts transfected
8
transfected ad5rsvvegf-165
8
106 skeletal
8
left ventricle
8
capillary density
8
skeletal
4
skeletal muscle
4
muscle cells
4
cells expressing
4

Similar Publications

Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.

View Article and Find Full Text PDF

Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.

View Article and Find Full Text PDF

: Cultivated meat, an alternative to conventional meat, has substantial potential for alleviating environmental and ethical concerns. This method of manufacturing meat involves the isolation of skeletal muscle satellite cells (SMSCs) from donor animals, after which they proliferate in vitro and differentiate into primitive muscle fibers. The aim of this research was to evaluate how the insulin-like growth factor 1 (IGF1) gene regulates the myogenic differentiation of bovine skeletal muscle satellite cells (bSMSCs).

View Article and Find Full Text PDF

The Effect of Leaf Extract on C2C12 Myoblast Proliferation and Redox Status Under Oxidative Insult.

Antioxidants (Basel)

November 2024

Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.

Skeletal muscle tissue can regenerate after damage through the action of satellite cells, which proliferate as myoblasts when activated. Oxidative stress, marked by high rates of reactive oxygen species (e.g.

View Article and Find Full Text PDF

Unlabelled: Rhabdomyosarcoma (RMS) is a tumor which resembles skeletal muscle. Current treatments are limited to surgery and non-targeted chemotherapy, highlighting the need for alternative therapies. Differentiation therapy uses molecules that act to shift the tumor cells' phenotype from proliferating to differentiated, which in the case of skeletal muscle includes exit from the cell cycle and potentially fusion into myofibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!