Amelogenin (AmelX) null mice develop hypomineralized enamel lacking normal prism structure, but are healthy and fertile. Because these mice are smaller than wild-type mice prior to weaning, we undertook a detailed analysis of the weight of mice and analyzed AmelX expression in non-dental tissues. Wild-type mice had a greater average weight each day within the 3-wk period. Using reverse transcription-polymerase chain reaction (RT-PCR), products of approximately 200 bp in size were generated from wild-type teeth, brain, eye, and calvariae. DNA sequence analysis of RT-PCR products from calvariae indicated that the small amelogenin leucine-rich amelogenin peptide (LRAP), both with and without exon 4, was expressed. No products were obtained from any of the samples from the AmelX null mice. We also isolated mRNAs that included AmelX exons 8 and 9, and identified a duplication within the murine AmelX gene with 91% homology. Our results add additional support to the hypothesis that amelogenins are multifunctional proteins, with potential roles in non-ameloblasts and in non-mineralizing tissues during development. The smaller size of AmelX null mice could potentially be explained by the lack of LRAP expression in some of these tissues, leading to a delay in development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0722.2006.00286.xDOI Listing

Publication Analysis

Top Keywords

wild-type mice
12
amelx null
12
null mice
12
mice
8
rt-pcr products
8
amelx
6
comparison body
4
body weight
4
weight gene
4
gene expression
4

Similar Publications

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF

ALDH1L1 plays a crucial role in folate metabolism, regulating the flow of one-carbon groups through the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO in a NADP-dependent reaction. The downregulation of ALDH1L1 promotes malignant tumor growth, and silencing of ALDH1L1 is commonly observed in many cancers. In a previous study, knockout (KO) mice were found to have an altered liver metabotype, including significant alterations in glycine and serine.

View Article and Find Full Text PDF

Enteric pathogen rotavirus (RV) primarily infects mature enterocytes at the tips of the intestinal villi; however, the role of secretory Paneth and goblet cells in RV pathogenesis remains unappreciated. Atoh1 knockout mice (Atoh1cKO) were used to conditionally delete Paneth, goblet, and enteroendocrine cells in the epithelium to investigate the role of secretory cells in RV infection. Unexpectedly, the number of infected enterocytes and the amount of RV shedding in the stool were greatly decreased following secretory cell deletion.

View Article and Find Full Text PDF

Aims: This study investigated the protective role of Annexin A1 (ANXA1) in sepsis-associated encephalopathy (SAE) by examining its effects on brain vascular endothelium and blood-brain barrier (BBB) integrity.

Methods: Mice were divided into four groups: wild type (WT), cecal ligation and puncture (CLP), ANXA1 knockout (ANXA1[-/-]), and ANXA1(-/-) with CLP. Neurobehavioral changes were assessed using the Y-maze test, while BBB integrity was evaluated through Evans blue dye (EBD) staining and permeability tests with fluorescein isothiocyanate (FITC)-dextran.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!