A promising strategy of bone tissue engineering is to repair bone defects by implanting biodegradable scaffolds that can undergo remodeling and be replaced completely by autologous bone tissue. For this purpose, it is necessary to create scaffolds that can be degraded by osteoclasts and enable osteoblasts to build new mineralized bone matrix. In order to achieve this goal a new porous material has been developed using biomimetically mineralized collagen I. These scaffolds were co-cultured with osteoclast-like cells and osteoblasts in order to characterize the capacity of these cells to remodel the material in vitro. It was possible to show the development of biologically active osteoclast- like cells that were able to invade and degrade the scaffold. They degraded the scaffold by internalizing it as intracellular vesicles, thereby making room for osteoblasts to invade and build new bone matrix. In addition, it could be shown that osteoblasts proliferated, differentiated, and produced new mineralized extracellular matrix. Hence, it could be shown that co-culture of osteoclastlike cells and osteoblasts on biomimetically mineralized collagen I is a promising approach for bone tissue engineering. In addition, it can be applied to study the process of bone remodeling in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2006.12.949DOI Listing

Publication Analysis

Top Keywords

mineralized collagen
12
bone tissue
12
collagen scaffolds
8
tissue engineering
8
bone matrix
8
biomimetically mineralized
8
cells osteoblasts
8
bone
7
mineralized
5
osteoblasts
5

Similar Publications

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Collagen-mediated cardiovascular calcification.

Int J Biol Macromol

January 2025

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China. Electronic address:

Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions.

View Article and Find Full Text PDF

Bio-inspired mineralized collagen scaffolds with precisely controlled gradients for the treatment of severe osteoarthritis in a male rabbit model.

Int J Biol Macromol

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:

Osteoarthritis affects approximately 500 million individuals globally, with severe cases often leading to osteochondral defects. Biomimetic collagen-hydroxyapatite scaffolds have been investigated for the treatment of osteochondral defects. However, achieving precise mimicry of the intricate composition, gradient nanostructure, and biological function of native tissue remains a formidable challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!