AI Article Synopsis

  • Calcium phosphate (Ca-P) cements, known for their good bone response, can have enhanced ingrowth and degradation rates by adding macropores through CO(2) foaming and PLGA microparticles.
  • In a study, different formulations of porous PLGA/Ca-P cement composites were implanted in rats, and results showed that PLGA microparticles promoted bone and tissue growth without adverse reactions.
  • The findings indicate that these composites might be effective for bone regeneration and have potential osteoinductive properties, making them promising materials for bone tissue engineering.

Article Abstract

Calcium phosphate (Ca-P) cements are injectable, self-setting ceramic pastes generally known for their favorable bone response. Ingrowth of bone and subsequent degradation rates can be enhanced by the inclusion of macropores. Initial porosity can be induced by CO(2) foaming during setting of the cement, whereas secondary porosity can develop after hydrolysis of incorporated poly(DL-lactic- co-glycolic acid) (PLGA) microparticles. In this study, we focused on the biological response to porous PLGA/Ca-P cement composites. Pre-set composite discs of four formulations (4 wt% or 15 wt% PLGA microparticles and low or high CO(2) induced porosity) were implanted subcutaneously and in cranial defects in rats for 12 weeks. Histological analysis of the explanted composites revealed that bone and fibrous tissue ingrowth was facilitated by addition of PLGA microparticles (number average diameter of 66 +/- 25 microm). No adverse tissue reaction was observed in any of the composites. Significant increases in composite density due to bone ingrowth in cranial implants were found in all formulations. The results suggest that the PLGA pores are suitable for bone ingrowth and may be sufficient to enable complete tissue ingrowth without initial CO(2) induced porosity. Finally, bone-like mineralization in subcutaneous implants suggests that, under appropriate conditions and architecture, porous PLGA/Ca-P cement composites can exhibit osteoinductive properties. These PLGA/Ca-P composites are a promising scaffolding material for bone regeneration and bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2006.12.789DOI Listing

Publication Analysis

Top Keywords

plga microparticles
12
bone
8
porous plga/ca-p
8
plga/ca-p cement
8
cement composites
8
co2 induced
8
induced porosity
8
tissue ingrowth
8
bone ingrowth
8
ingrowth
5

Similar Publications

Novel double-layered PLGA microparticles-dissolving microneedle (MPs-DMN) system for peptide drugs sustained release by transdermal delivery.

Int J Pharm

December 2024

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing CAS Microneedle Technology Ltd., Beijing 102609, China. Electronic address:

The combination of microparticles (MPs) with dissolving microneedles (DMN) represents a promising transdermal approach for the sustained release of biomacromolecule drug. In this study, we developed a double-layered microparticles-dissolving microneedle (MPs-DMN) system, which strategically concentrates PLGA MPs at the tip of the microneedle to achieve sustained release of peptide drugs through transdermal delivery. We selected exenatide (EXT) as a model peptide drug and established HPLC-UV and UPLC-MS methods for the quantitative analysis of the drug content of MPs-DMN and drug concentrations in plasma.

View Article and Find Full Text PDF

Biomimetic Anisotropic-Functionalized Platelet-Membrane-Coated Polymeric Particles for Targeted Drug Delivery to Human Breast Cancer Cells.

ACS Appl Mater Interfaces

January 2025

Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins Translational ImmunoEngineering Center, and the Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N. Broadway, Smith Building 5017, Baltimore, Maryland 21231, United States.

Biomimetic particles that can replicate aspects of natural biological cell function are useful for advanced biological engineering applications. Engineering such particles requires mimicking the chemical complexity of the surface of biological cells, and this can be achieved by coating synthetic particles with naturally derived cell membranes. Past research has demonstrated the feasibility of utilizing cell membrane coatings from a variety of cell types to achieve extended blood circulation half-life.

View Article and Find Full Text PDF

Background: The identification of drugs targeting multiple pathways is essential for comprehensive protection against cerebral ischemia-reperfusion injury.

Research Design And Methods: This study aimed to develop RS31, a multi-target cytoprotectant composed of SS31 (an oxidative stress mitigator) and rapamycin (Rapa), contributes anti-inflammatory and blood-brain barrier protection. RS31 was synthesized using click chemistry, and its ability to scavenge reactive oxygen species (ROS) and reduce inflammation was tested in HO-injured PC12 cells and LPS-stimulated BV2 cells.

View Article and Find Full Text PDF

Selective sentinel lymph node biopsy (SNLB) is the standard method for detecting regional metastases in breast cancer patients. Identifying affected axillary lymph nodes before neoadjuvant treatment is crucial, as such treatment may alter drainage pathways and lymph node morphology, hindering the identification of sentinel lymph nodes. The use of carbon-based tattooing on sentinel lymph nodes (SLN) has been employed as a permanent tattooing method in clinical studies of Targeted Axillary Dissection (TAD), aiding in the SLN identification during surgery.

View Article and Find Full Text PDF

Functional interleukin-4 releasing microparticles impact THP-1 differentiated macrophage phenotype.

Front Bioeng Biotechnol

November 2024

School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom.

Introduction: Macrophage cell therapies offer potential treatment in inflammatory diseases due to their ability to mobilize and stimulate their environment. However, successful treatment requires a pro-regenerative macrophage phenotype to be retained . Polymeric microparticles may provide a potential route to direct and sustain macrophage phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!