Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
BF3.2CF3CH2OH complex was found to be a very effective superacidic catalyst comparable in acid strength to at least that of 100% anhydrous sulfuric acid for various acid-catalyzed organic transformations such as isomerizations, rearrangements, ionic hydrogenation of various ketones, and aromatics with triethylsilane and nitration of aromatics with metal nitrate. Studies of the pivalaldehyde-methyl isopropyl ketone rearrangement and the benzopinacol to phenanthrene transformation suggest that the complex has an acidity comparable to that of 100% anhydrous sulfuric acid. The structure and properties of the 1:2 boron trifluoride-trifluoroethanol complex have been further studied using NMR (1H, 13C, 19F, 11B) and DFT calculations at the B3LYP/6-311++G//B3LYP/6-31G level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo0604181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!