An efficient method for the micropropagation of Agave species.

Methods Mol Biol

Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, México.

Published: May 2006

Despite their economic importance, the Agave spp. have not been genetically improved. This is probably owing to the fact that they have very long life cycles and many of them have an inefficient sexual reproduction mechanism. Micropropagation offers an alternative to this problem through the efficient cloning of selected high-yielding "elite" plants. We report here an efficient method to micropropagate agaves and a strategy for the management of large scale production that has been successfully applied to several Agave spp.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-959-1:165DOI Listing

Publication Analysis

Top Keywords

efficient method
8
agave spp
8
method micropropagation
4
micropropagation agave
4
agave species
4
species despite
4
despite economic
4
economic agave
4
spp genetically
4
genetically improved
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

The surgical risk is higher for obese patients undergoing laparoscopic left hemicolectomy. To enhance the surgical safety and efficacy for obese patients, we have innovatively integrated the advantages of various surgical approaches to modify a pancreas-guided C-shaped surgical procedure. The safety and quality were assessed through a retrospective analysis.

View Article and Find Full Text PDF

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

With the global rise in advanced maternal age (AMA) pregnancies, the risk of gestational diabetes mellitus (GDM) increases. However, few GDM prediction models are tailored for AMA women. This study aims to develop a practical risk prediction model for GDM in AMA women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!