Preparation and characterization of novel hybrid of chitosan-g-lactic acid and montmorillonite.

J Biomed Mater Res A

Division of Polymer Science and Engineering, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

Published: August 2006

The utilization of biopolymers and the development of organic-inorganic hybrids are ever increasing interest of material science researchers around the globe for various applications. The present attempt is intended to prepare nanocomposites of lactic acid grafted chitosan and layered silicates. Nanocomposites were prepared by dissolving chitosan and dispersing sodium montmorillonite in aqueous solution of L-lactic acid with subsequent heating and film casting. They were characterized by conventional techniques such as Fourier transform infrared spectroscopy, X-ray diffractometry, thermogravimetric analysis, energy dispersive X-ray spectroscopy, and elemental analysis. The results from polar optical and transmission electron microscopic measurements are also discussed. Sorption behavior of samples has been followed by measuring swelling degree and contact angle. The films have shown enhanced hydrophilicity when compared with polylactic acid (PLA). Issues on the interactions of polycationic chitosan with clay are also discussed. It is observed that nanocomposites are exhibiting better thermal and physical properties than neat chitosan-g-LA and PLA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.30738DOI Listing

Publication Analysis

Top Keywords

preparation characterization
4
characterization novel
4
novel hybrid
4
hybrid chitosan-g-lactic
4
acid
4
chitosan-g-lactic acid
4
acid montmorillonite
4
montmorillonite utilization
4
utilization biopolymers
4
biopolymers development
4

Similar Publications

Beyond the Herald Patch: Exploring the Complex Landscape of Pityriasis Rosea.

Am J Clin Dermatol

January 2025

Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.

Pityriasis rosea (PR) is a prevalent dermatological condition characterized by a distinctive herald patch, followed by secondary eruptions, often forming a "Christmas tree" pattern on the trunk. Despite its recognizable clinical presentation, the etiology of PR remains uncertain, with hypotheses pointing to both infectious and noninfectious origins. Human herpesviruses (HHV) 6 and 7 have been implicated, with evidence suggesting viral reactivation as a potential trigger.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Compressive electron backscatter diffraction imaging.

J Microsc

January 2025

Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.

Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!