Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence. The present study used immunohistochemistry to localize factors in situ and to test hypotheses about their roles in an in vitro model. Specific antibody staining revealed that TrkC, the NT3 receptor, is present in neural precursors prior to embryonic day E11 until after birth. NT3 appeared in precursor cells during migration (E13-E15) and disappeared at birth. TrkC and NT3 occurred in the same structures, including growing axons, terminals, and their synaptic targets. Thus, NT3 tracks the migration routes and the morphogenetic sequences within a window defined by TrkC. In vitro, the cochlear nucleus anlage was explanted from E11 embryos. Cultures were divided into groups fed with defined medium, with or without FGF2, BDNF, and NT3 supplements, alone or in combinations, for 7 days. When neuroblasts migrated and differentiated, immunostaining was used for locating NT3 and TrkC in the morphogenetic sequence, bromodeoxyuridine for proliferation, and synaptic vesicle protein for synaptogenesis. By time-lapse imaging and quantitative measures, the results support the hypothesis that FGF2 promotes proliferation and migration. NT3 interacts with FGF2 and BDNF to promote neurite outgrowth, fasciculation, and synapse formation. Factors and receptors localize to the structural sites undergoing critical changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/neu.20264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!