Prepolarized MRI uses pulsed magnetic fields to produce MR images by polarizing the sample at one field strength (approximately 0.5 T) before imaging at a much lower field (approximately 50 mT). Contrast reflecting the T(1) of the sample at an intermediate field strength is achieved by polarizing the sample and then allowing the magnetization to decay at a chosen "evolution" field before imaging. For tissues whose T(1) varies with field strength (T(1) dispersion), the difference between two images collected with different evolution fields yields an image with contrast reflecting the slope of the T(1) dispersion curve between those fields. Tissues with high protein content, such as muscle, exhibit rapid changes in their T(1) dispersion curves at 49 and 65 mT due to cross-relaxation with nitrogen nuclei in protein backbones. Tissues without protein, such as fat, have fairly constant T(1) over this range; subtracting images with two different evolution fields eliminates signal from flat T(1) dispersion species. T(1) dispersion protein-content images of the human wrist and foot are presented, showing clear differentiation between muscle and fat. This technique may prove useful for delineating regions of muscle tissue in the extremities of patients with diseases affecting muscle viability, such as diabetic neuropathy, and for visualizing the protein content of tissues in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.20910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!