Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyhydroxyalkanoate (PHA) synthase is the central enzyme involved in the biosynthesis of PHA, a family of bacterial biodegradable polyesters. Due to its high variability, the N-terminal fragment of this enzyme was previously considered as unnecessary for a functionally active enzyme. In this study, polyhydroxybutyrate synthase from Ralstonia eutropha (PhbC(Re)) with a deletion on N-terminal 88 amino acid residues showed a significant reduced activity, as reflected by only 1.5% PHB accumulation compared with the wild type which produced 58.4% PHB of the cell dry weight. Whilst several site-specific mutagenesis results revealed the amphiphilic alpha-helix assembled by the amino acid region, D70-E88 played an important role in both maintaining the PHB synthase activity and regulating molecular weight and polydispersity of accumulated PHB homopolymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-006-0371-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!