Download full-text PDF

Source
http://dx.doi.org/10.1038/441031aDOI Listing

Publication Analysis

Top Keywords

particle physics
4
physics axion?
4
particle
1
axion?
1

Similar Publications

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.

View Article and Find Full Text PDF

Maximum-Power Stirling-like Heat Engine with a Harmonically Confined Brownian Particle.

Entropy (Basel)

January 2025

Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain.

Heat engines transform thermal energy into useful work, operating in a cyclic manner. For centuries, they have played a key role in industrial and technological development. Historically, only gases and liquids have been used as working substances, but the technical advances achieved in recent decades allow for expanding the experimental possibilities and designing engines operating with a single particle.

View Article and Find Full Text PDF

Information Theoretical Analysis of Quantum Mixedness in a Finite Model of Interacting Fermions.

Entropy (Basel)

January 2025

CeBio-Departamento de Ciencias Básicas, Universidad Nacional del Noroeste Provincia de Buenos Aires (UNNOBA), CONICET, Junin 6000, Argentina.

In this study, we utilize information theory tools to investigate notable features of the quantum degree of mixedness (Cf) in a finite model of interacting fermions. This model serves as a simplified proxy for an atomic nucleus, capturing its essential features in a more manageable form compared to a realistic nuclear model, which would require the diagonalization of matrices with millions of elements, making the extraction of qualitative features a significant challenge. Specifically, we aim to correlate Cf with particle number fluctuations and temperature, using the paradigmatic Lipkin model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!