Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ion-selective microelectrodes (ISMs) have been used extensively in neurophysiological studies. ISMs selective for H(+) and Ca(2+) are notable for their sensitivity and selectivity, but suffer from a slow response time, and susceptibility to noise because of the high electrical resistance of the respective ion exchange cocktails. These drawbacks can be overcome by using a "coaxial" or "concentric" inner micropipette to shunt the bulk of the ion exchanger resistance. This approach was used decades ago to record extracellular [Ca(2+)] transients in cat cortex, but has not been subsequently used. Here, we describe a method for the rapid fabrication of concentric pH- and Ca(2+)-selective microelectrodes useful for extracellular studies in brain slices or other work in vitro. Construction was simplified compared with previous implementations, by using commercially available, thin-walled borosilicate glass, drawing an outer barrel with a rapid taper (similar to a patch pipette), and by use of a quick and reliable silanization procedure. Using a piezoelectric stepper to effect a rapid solution change, the response time constants of the concentric pH and Ca(2+)-electrodes were 14.9 +/- 1.3 and 5.3 +/- 0.90 ms, respectively. Use of these concentric ISMs is demonstrated in rat hippocampal slices. Activity-dependent, extracellular pH, and [Ca(2+)] transients are shown to arise two- to threefold faster, and attain amplitudes two- to fourfold greater, when recorded by concentric versus conventional ISMs. The advantage of concentric ISMs for studies of ion transport and ion diffusion is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00258.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!