Normal human somatic cells have a limited division potential when they grow in vitro. It is believed that shortening of telomeres, specialized structures at the ends of chromosomes, controls cell growth. When one telomere achieves a critical minimal length, the cell cycle control mechanism recognizes it as DNA damage and causes the cell's exit from the cycle in G1-phase. Because it is not possible to extend telomeres in normal cells, this non-dividing state is prolonged indefinitely, and is known as cellular senescence. The immortal cell line MDA-MB-231 has active telomerase, which prevents telomere shortening and allows cells' permanent divisions. However, there is a fraction of cells that do not divide over several days in culture as documented for some other tumour cell lines. Combination of methods has made it possible to isolate these non-growing cells and compare them with the fraction of fast-growing cells from the same culture. Although the non-growing fraction contains a significant percentage of typical senescent cells, both fractions have equal telomerase activity and telomere length. In this paper we discuss possible mechanisms that cause the appearance of this non-growing fraction of cells in cultures of MDA-MB-231, which indicate stress and genome instability rather than variation in telomerase activity or telomere shortening to affect individual cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6496020 | PMC |
http://dx.doi.org/10.1111/j.1365-2184.2006.00383.x | DOI Listing |
Phys Rev Lett
December 2024
Shanghai Jiao Tong University, School of Physics and Astronomy, Institute of Natural Sciences, Shanghai 200240, China.
Cell layers are often categorized as contractile or extensile active, nematics but recent experiments on neural progenitor cells with induced +1 topological defects challenge this classification. In a bottom-up approach, we first study a relevant particle-level model and then analyze a continuum theory derived from it. We show that both model and theory account qualitatively for the main experimental result, i.
View Article and Find Full Text PDFAnalyst
January 2025
Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biology, Mount Saint Vincent University;
Zebrafish scales offer a variety of advantages for use in standard laboratories for teaching and research purposes. Scales are easily collected without the need for euthanasia, regenerate within a couple of weeks, and are translucent and small, allowing them to be viewed using a standard microscope. Zebrafish scales are especially useful in educational environments, as they provide a unique opportunity for students to engage in hands-on learning experiences, particularly in understanding cellular dynamics and in vitro culturing methods.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!