The reactions of methyl radicals with large (up to C(96)H(24)) polycyclic aromatic hydrocarbons (PAHs) are studied by density functional calculations to shed light on the experimentally observed deposition of carbon on highly oriented pyrolytic graphite (HOPG), which occurs when hot HOPG (decorated by nanometre-sized defects) is exposed to methyl radicals. The equilibrium structures of the reaction products, together with transition structures for PAHs up to the size of phenanthroperylene, are determined using the density functionals B3LYP, TPSSh, BP86 and TPSS. The structures are analysed by computing the pi orbital axis vector (POAV) and the altitude of the reactive carbon above the molecular plane of the PAH. The strongest C-CH(3) bonds are found at the edges of the PAHs, where the s character of the C orbital involved in the bond is roughly 25 % (sp(3) hybrid orbital). Carbon atoms inside the PAH form bonds with the methyl radical through atomic orbitals with about 16 % s character in the POAV analysis. These bonds are much weaker than those at the edges of the PAH, while the reactive carbon has moved about 40 pm above the molecular plane. At the edges, the PAH carbon atoms do not leave the molecular plane to this extent. The computed barrier heights and geometrical parameters of the transition structures are in agreement with Hammond's postulate, and the relative energies of all of the equilibrium structures can be rationalized by Hückel molecular orbital (HMO) theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200500673 | DOI Listing |
Soft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Karlsruhe Institute of Technology, IQMT, 76131 Karlsruhe, Germany.
Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.
Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.
Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!