The underlying mechanisms associated with radiation-induced cognitive impairments remain elusive but may involve changes in hippocampal neural precursor cells. Proliferating neural precursor cells have been shown to be extremely sensitive to X rays, either from damage to the cells themselves and/or through microenvironmental factors, including the anatomical relationship with the microvasculature, which is altered by radiation. The neutron capture reaction in boron was used to determine whether the sensitivity of neural precursor cells was dominated by direct radiation effects or was mediated through changes in the microvasculature. Young adult rats were irradiated with X rays, neutrons only, or neutrons plus either mercapto-undecahydro-dodecaborane (BSH) or p-dihydroxyboryl-phenylalanine (BPA). BSH remains inside cerebral vessels, thereby limiting the neutron capture intravascularly; BPA readily passes into the parenchyma. One month after irradiation, cell proliferation and numbers of immature neurons were determined using immunohistochemistry. Results showed that (1) neural precursor cells and their progeny were decreased in a dose-dependent manner by mixed high- and low-LET radiation, and (2) selective irradiation of the microvasculature resulted in less loss of neural precursor cells than when the radiation dose was delivered uniformly to the parenchyma. This information, and in particular the approach of selectively irradiating the vasculature, may be useful in developing radioprotective compounds for use during therapeutic irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR3539.1DOI Listing

Publication Analysis

Top Keywords

neural precursor
24
precursor cells
24
radiation dose
8
neutron capture
8
cells
7
precursor
6
radiation
5
neural
5
depletion neural
4
cells local
4

Similar Publications

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!