In this work, we describe the insertion of a water-soluble bisadduct fulleropyrrolidine derivative into the interlayer space of three layered smectite clays. The composites were characterized by a combination of powder X-ray diffraction, transmission electron microscopy, X-ray photoemission and FTIR spectroscopies, and laser flash photolysis measurements. The experiments, complemented by computer simulations, give insight into the formation process, structural details, and properties of the fullerene/clay nanocomposites. The reported composite materials constitute a new hybrid system, where C(60) differs from its crystals or its solutions, and open new perspectives for the design and construction of novel C(60)-based organic/clay hybrid materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0579661 | DOI Listing |
J Am Chem Soc
May 2006
Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece.
In this work, we describe the insertion of a water-soluble bisadduct fulleropyrrolidine derivative into the interlayer space of three layered smectite clays. The composites were characterized by a combination of powder X-ray diffraction, transmission electron microscopy, X-ray photoemission and FTIR spectroscopies, and laser flash photolysis measurements. The experiments, complemented by computer simulations, give insight into the formation process, structural details, and properties of the fullerene/clay nanocomposites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!