Early and late cytotoxic effects of external application of the Alzheimer's Abeta result from the initial formation and function of Abeta ion channels.

Biochemistry

Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA.

Published: May 2006

AI Article Synopsis

  • The Alzheimer's beta-amyloid (Abeta) peptide can cause cell death through apoptosis by triggering immediate cellular responses like changes in calcium levels and membrane permeability.
  • The cytotoxic effects of Abeta can last for days after its removal due to the persistent activity of Abeta ion channels in the cell membrane.
  • A newly developed specific peptide, NA4, effectively blocks these Abeta-caused cellular responses, including caspase activation and apoptosis, providing a potential therapeutic target.

Article Abstract

Extracellular application of the Alzheimer's beta-amyloid (Abeta) peptide evokes a series of cellular responses that leads to the death of cells by apoptosis. Some responses to freshly prepared Abeta occur immediately, including changes in intracellular calcium concentration and changes in membrane permeability and phosphatidylserine asymmetry. We show here that the cytotoxic action of externally applied Abeta, such as caspase activation and apoptotic loss of cell viability, occurs and persists even several days after Abeta is removed from the medium. We find that the mechanism for this persistent cytotoxic action of extracellular Abeta is based on the sustained activity of active Abeta ion channels that remain incorporated in the cell membrane. To confirm this assessment, we blocked the late cytotoxic action of Abeta with the classically known Abeta channel blockers zinc and tromethamine. To further validate this conclusion, we developed a specific peptide segment from the sequence forming the mouth of the Abeta channel to block Abeta Ca2+ channels acutely and to block late Abeta effects on caspase activation and apoptosis. This is the first report of a specific Abeta channel blocker compound, NA4, which efficaciously and potently blocks the most known cellular responses to Abeta.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi060148gDOI Listing

Publication Analysis

Top Keywords

abeta
15
cytotoxic action
12
abeta channel
12
late cytotoxic
8
application alzheimer's
8
abeta ion
8
ion channels
8
cellular responses
8
caspase activation
8
early late
4

Similar Publications

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!