Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) plays a central metabolic role in photosynthetic eukaryotes, and its catabolism is a crucial process for the nutrient economy of higher plants. The rubisco holoenzyme is assembled from eight chloroplast-encoded large subunits and eight nuclear-encoded small subunits. We have identified a cluster of conserved tyrosines at the interface between subunits (comprising Y67, Y68, and Y72 from the betaA-betaB loop of the small subunit and Y226 from the large subunit) that may contribute to holoenzyme stability. To investigate the role of these tyrosines in rubisco structure and in vivo degradation, we have examined site-directed mutants of these residues (Y67A, Y68A, Y72A, and Y226L) in Chlamydomonas reinhardtii. Even if all mutant strains were able to grow photoautotrophically, they exhibited a reduction in rubisco activity and/or the level of expression, especially the Y67A and Y72A mutants. Besides, all mutant rubiscos were inactivated at a lower temperature than the wild type. The kinetics of proteolysis of the mutant enzymes with subtilisin revealed structural alterations, leading to facilitated disassembly (in the cases of Y67A and Y72A) or aggregation propensity (for Y68A and Y226L). When subjected to oxidative stress in vivo through exposure of liquid cultures to hydrogen peroxide, all mutant strains degraded rubisco at a faster rate than the wild type. These results demonstrate that the tyrosine cluster around the betaA-betaB loop of rubisco small subunit plays a stabilizing role by affecting the catalytic activity and the degradation rate of the enzyme in stressed cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi052588y | DOI Listing |
Plant Cell
September 2020
Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast gene and nuclear genes. Here we develop an RNAi- tobacco () master-line, tobRrΔS, for producing homogenous plant Rubisco by L-S operon chloroplast transformation. Four genotypes encoding alternative genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a gene whose codon use and 5' untranslated-region matched Additional tobacco genotypes produced here incorporated differing potato () - operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pS-subunit.
View Article and Find Full Text PDFNew Phytol
August 2020
Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated.
View Article and Find Full Text PDFJ Biol Chem
August 2018
From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden,
The catalytic performance of the major CO-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO sequestration in polar cold waters.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
August 2016
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key enzyme to assimilate CO(2) into the biosphere. The nonredundant structural data sets for three RuBisCO domain superfamilies, i.e.
View Article and Find Full Text PDFACS Chem Biol
January 2014
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States.
The LpxC enzyme in the lipid A biosynthetic pathway is one of the most promising and clinically unexploited antibiotic targets for treatment of multidrug-resistant Gram-negative infections. Progress in medicinal chemistry has led to the discovery of potent LpxC inhibitors with a variety of chemical scaffolds and distinct antibiotic profiles. The vast majority of these compounds, including the nanomolar inhibitors L-161,240 and BB-78485, are highly effective in suppressing the activity of Escherichia coli LpxC (EcLpxC) but not divergent orthologs such as Pseudomonas aeruginosa LpxC (PaLpxC) in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!