We present evidence strongly suggesting that a proton gradient (acid inside) is used to drive an electroneutral, substrate-specific, K(+)/H(+) antiport in both tonoplast and plasma membrane-enriched vesicles obtained from oilseed rape (Brassica napus) hypocotyls. Proton fluxes into and out of the vesicles were monitored both by following the quenching and restoration of quinacrine fluorescence (indicating a transmembrane pH gradient) and of oxonol V fluorescence (indicating membrane potential.) Supply of K(+) (with Cl(-) or SCN(-)) after a pH gradient had been established across the vesicle membrane by provision of ATP to the H(+)-ATPase dissipated the transmembrane pH gradient but did not depolarize the positive membrane potential. Evidence that the K(+)/H(+) exchange thus indicated could not be accounted for by mere electric coupling included the findings that, first, no positive potential was generated when KSCN or KCl was supplied, even in the absence of 100 millimolar Cl(-) and, second, efflux of K(+) from K(+)-loaded vesicles drives intravesicular accumulation of H(+) against the electrochemical potential gradient. Neither was the exchange due to competition between K(+) and quinacrine for membrane sites, nor to inhibition of the H(+)-ATPase. Thus, it is likely that it was effected by a membrane component. The exchanger utilized primarily K(+) (at micromolar concentrations); Na(+)/H(+) antiport was detected only at concentrations two orders of magnitude higher. Rb(+), Li(+), or Cs(+) were ineffective. Dependence of tonoplast K(+)/H(+) antiport on K(+) concentration was complex, showing saturation at 10 millimolar K(+) and inhibition by concentrations higher than 25 millimolar. Antiport activity was associated both with tonoplast-enriched membrane vesicles (where the proton pump was inhibited by more than 80% by 50 millimolar NO(3) (-) and showed no sensitivity to vanadate or oligomycin) and with plasma membrane-enriched fractions prepared by phase separation followed by separation on a sucrose gradient (where the proton pump was vanadate and diethylstilbestrol-sensitive but showed no sensitivity to NO(3) (-) or oligomycin). The possible physiological role of such a K(+)/H(+) exchange mechanism is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1081144PMC
http://dx.doi.org/10.1104/pp.97.3.1212DOI Listing

Publication Analysis

Top Keywords

membrane vesicles
8
k+/h+ antiport
8
plasma membrane-enriched
8
fluorescence indicating
8
transmembrane gradient
8
membrane potential
8
k+/h+ exchange
8
proton pump
8
membrane
7
gradient
6

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review.

J Psychiatr Res

January 2025

Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.

Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers.

View Article and Find Full Text PDF

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!