Endoglycanase-Catalyzed Degradation of Hemicelluloses during Development of Carnation (Dianthus caryophyllus L.) Petals.

Plant Physiol

Vegetable Crops Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611.

Published: March 1991

Large molecular-size hemicelluloses, including xyloglucan, decreased in quantity during development of carnation (Dianthus caryophyllus L. cv White Sim) petals, along with a relative increase in polymers with an average size of 10 kilodaltons. An enzyme extract from senescing petal tissue depolymerized the large molecular-size hemicelluloses in a pattern similar to that occurring in vivo during petal development. The products generated in vitro were composed of polymeric and monomeric components, the latter consisting primarily of xylose, galactose, and glucose. The 10 kilodalton hemicelluloses were resistant to in vitro enzymic hydrolysis. Glycosyl-linkage composition of the large molecular-size polymers provided evidence for the presence of xyloglucan with smaller amounts of arabinoxylan and arabinan. The 10 kilodalton polymers were enriched in mannosyl and 4-linked glucosyl residues, presumably derived from glucomannan. During petal development or enzymic hydrolysis, no change was observed in the relative glycosyl-linkage composition of the large molecular-size hemicelluloses. The in vitro activity of carnation petal enzymes active toward native hemicelluloses increased threefold at the onset of senescence and declined slightly thereafter. Gel chromatography revealed 23 and 12 kilodalton proteins with hemicellulase activity. The enzymes hydrolyzed the large molecular-size hemicelluloses extensively and without formation of monomers. Endoxylanase activity was detected in the partially purified enzyme preparation. Xyloglucan was depolymerized in the absence of cellulase activity, suggesting the presence of a xyloglucan-specific glucanase. These data indicate that the hemicellulose molecular-size changes observed during development of carnation petals are due, in part, to the enzymic depolymerization of large molecular-size hemicelluloses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077616PMC
http://dx.doi.org/10.1104/pp.95.3.853DOI Listing

Publication Analysis

Top Keywords

large molecular-size
24
molecular-size hemicelluloses
20
development carnation
12
hemicelluloses
8
carnation dianthus
8
dianthus caryophyllus
8
petal development
8
enzymic hydrolysis
8
glycosyl-linkage composition
8
composition large
8

Similar Publications

hemocyanin as a novel natural immunostimulant in mammals.

Front Immunol

January 2025

Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.

Introduction: Gastropod hemocyanins are potent immunostimulants in mammals, a trait associated with their large molecular size and unusual glycosylation patterns. While the hemocyanin from the marine snail keyhole limpet (KLH), has been widely studied and successfully employed as a carrier/adjuvant in several immunological applications, as well as a non-specific immunostimulant for bladder cancer treatment, few other gastropod hemocyanins have been biochemically and immunologically characterized. In this work, we investigated the immunogenic properties of the hemocyanin from (PcH), an invasive south American freshwater snail.

View Article and Find Full Text PDF

Tracing the birth and intrinsic disorder of loops and domains in protein evolution.

Biophys Rev

December 2024

Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

Protein loops and structural domains are building blocks of molecular structure. They hold evolutionary memory and are largely responsible for the many functions and processes that drive the living world. Here, we briefly review two decades of phylogenomic data-driven research focusing on the emergence and evolution of these elemental architects of protein structure.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is an important component of the skin's extracellular matrix, and its degradation leads to wrinkles. Hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) is the main factor responsible for HA degradation in dermis. This study aimed to identify natural plant materials that can effectively suppress HYBID expression and protect HA from degradation.

View Article and Find Full Text PDF

Study on the formation mechanism and effective manipulation of polymorphs and solvates in Osimertinib-Caffeic acid multi-component crystal with distinct properties.

Int J Pharm

February 2025

Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Investigating the formation mechanism and effective manipulation of multi-component crystal polymorphs is crucial for facilitating industrial drug development. Herein, five novel Osimertinib-caffeic acid forms were first strategically tailored by varying solvent selection. Theoretical analysis demonstrated this polymorphism is correlated with multiple hydrogen bond donors-acceptors within multi-component system, which provides manipulation space for reconfiguration of intermolecular interactions and structural competition, while solvent further induced or involved in hydrogen-bonded rearrangements.

View Article and Find Full Text PDF

The surface passivation with the heterostructure of the 2D/3D stack has been widely used for boosting the efficiency of n-i-p perovskite solar cells (PSCs). However, the disordered quantum well width distribution of 2D perovskites leads to energy landscape inhomogeneity and crystalline instability, which limits the further development of n-i-p PSCs. Here, a versatile approach, ligand-mediated surface passivation, was developed to produce a phase-pure 2D perovskite passivation layer with a homogeneous energy landscape by dual-ligand codeposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!