Dunaliella salina is an extremely halotolerant, unicellular, green alga lacking a rigid cell wall. Osmotic adaptation to high salinities is based on the accumulation of glycerol. To uncover other functions responsible for halotolerance, protein profiles of algae continuously grown in different salinities were compared. A 150 kilodalton protein (p 150) increased in amount with salt concentration. Furthermore, when the cells were subjected to drastic hyperosmotic shocks, p150 started to rise long after completion of the osmotic response but coincident with reinitiation of cell proliferation. Cells with an initially higher level of p150 resumed growth faster than cells with a lower level of the protein. Addition of cycloheximide early after hyperosmotic shock prevented the rise in p150, indicating this rise was due to de novo synthesis of the protein. These observations suggest that p150 is a saltinduced protein required for proliferation of the cells in saline media. p150 was purified to homogeneity and found to be a detergent-soluble glycoprotein. Polyclonal antibodies against p150 recognized a single protein component in D. salina crude extracts. A high M(r) cross-reacting protein was also observed in another Dunaliella strain, D. bardawil. Immunoelectron microscopy localized p150 to the cell surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077612 | PMC |
http://dx.doi.org/10.1104/pp.95.3.822 | DOI Listing |
Single particle cryogenic electron microscopy (cryo-EM) as a structural biology methodology has become increasingly attractive and accessible to investigators in both academia and industry as this ever-advancing technology enables successful structural determination of a wide range of protein and nucleic acid targets. Although data for many high resolution cryo-EM structures are still obtained using a 300 kV cryogenic transmission electron microscope (cryo-TEM), a modern 200 kV cryo-TEM equipped with an advanced direct electron detector and energy filter is a cost-effective choice for most single particle applications, routinely achieving sub 3 angstrom (Å) resolution. Here, we systematically evaluate performance of one such high-end configuration - a 200 kV Glacios microscope coupled with a Falcon 4 direct electron detector and Selectris energy filter (Glacios-F4-S).
View Article and Find Full Text PDFCurr Opin Struct Biol
October 2020
Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Recent advances in single-particle cryogenic-electron microscopy have facilitated an exponential growth in the number of membrane protein structures determined to close to atomic resolution. Nevertheless, despite improvements in microscope hardware, cryo-EM software and sample preparation techniques, challenges remain for structural analysis of small-sized membrane proteins (i.e.
View Article and Find Full Text PDFMissorting of MAPT/Tau represents one of the early signs of neurodegeneration in Alzheimer disease. The triggers for this are still a matter of debate. Here we investigated the sorting mechanisms of endogenous MAPT in mature primary neurons using microfluidic chambers (MFCs) where cell compartments can be observed separately.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!