The alga Mougeotia has a large central chloroplast whose positioning is regulated by photoactivation of phytochrome, possibly via modulation of cytosolic calcium (Serlin B, Roux SJ [1984] Proc Natl Acad Sci USA 81: 6368-6372). We used the patch clamp technique to examine the effects of red and far-red light on ion channel activity in the plasma membrane of Mougeotia protoplasts to determine if ion channels play a role in chloroplast movement. Patch clamping in the cell-attached mode reveals two channels of about 2 and 4 picoamperes amplitude at 0 millivolt (inside pipette) and estimated conductances of 30 and 65 picosiemens. They are activated by red light irradiation after a lag period of about 2 to 5 minutes. Far-red light, when applied immediately after red light irradiation, reverses this activation; otherwise it has no effect. This result implicates phytochrome. The addition of the calcium ionophore, A23187, also activates ion channel activity after a lag of a few minutes. The channels are not specific for calcium since they are present when calcium is removed from the external and pipette media. They are inhibited by quaternary ammonium ions. Thus, we believe they are calcium-activated potassium channels. Their possible role in chloroplast positioning is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062375PMC
http://dx.doi.org/10.1104/pp.92.3.822DOI Listing

Publication Analysis

Top Keywords

red light
12
calcium-activated potassium
8
potassium channels
8
plasma membrane
8
chloroplast positioning
8
far-red light
8
ion channel
8
channel activity
8
role chloroplast
8
light irradiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!