The effect of long-term (weeks to months) CO(2) enhancement on (a) the gas-exchange characteristics, (b) the content and activation state of ribulose-1,5-bisphosphate carboxylase (rubisco), and (c) leaf nitrogen, chlorophyll, and dry weight per area were studied in five C(3) species (Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, and Brassica oleracea) grown at CO(2) partial pressures of 300 or 900 to 1000 microbars. Long-term exposure to elevated CO(2) affected the CO(2) response of photosynthesis in one of three ways: (a) the initial slope of the CO(2) response was unaffected, but the photosynthetic rate at high CO(2) increased (S. tuberosum); (b) the initial slope decreased but the CO(2)-saturated rate of photosynthesis was little affected (C. album, P. vulgaris); (c) both the initial slope and the CO(2)-saturated rate of photosynthesis decreased (B. oleracea, S. melongena). In all five species, growth at high CO(2) increased the extent to which photosynthesis was stimulated following a decrease in the partial pressure of O(2) or an increase in measurement CO(2) above 600 microbars. This stimulation indicates that a limitation on photosynthesis by the capacity to regenerate orthophosphate was reduced or absent after acclimation to high CO(2). Leaf nitrogen per area either increased (S. tuberosum, S. melongena) or was little changed by CO(2) enhancement. The content of rubisco was lower in only two of the five species, yet its activation state was 19% to 48% lower in all five species following long-term exposure to high CO(2). These results indicate that during growth in CO(2)-enriched air, leaf rubisco content remains in excess of that required to support the observed photosynthetic rates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1055886 | PMC |
http://dx.doi.org/10.1104/pp.89.2.590 | DOI Listing |
Nanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.
We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
Underwater CO concentration fluctuates extremely in natural water bodies. Under low CO, the unique CO concentrating mechanism in aquatic plants, bicarbonate use, can suppress photorespiration. However, it remains unknown (1) to what extent bicarbonate use reduces photorespiration, (2) how exactly photorespiration varies between bicarbonate-users and CO-obligate users under CO-fluctuated environments, and (3) what are differences in Rubisco characteristics between these two types of aquatic plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!