Phosphoenolpyruvate carboxylase isolated from maize (Zea mays L.) leaves was assayed with varying concentrations of free phosphoenolpyruvate at several fixed-varying concentrations of free magnesium higher than required to saturate the enzyme reaction. These assays produced velocity data which were found to form a family of individual lines when plotted against free phosphoenolpyruvate or against total phosphoenolpyruvate, but not when plotted against the concentration of the complex of phosphoenolpyruvate with magnesium. In this latter case, the points from all the fixed-varying concentrations fell on the same line, which can be fitted to a modified Michaelis-Menten equation with a multiple correlation coefficient R(2) = 0.995. Similar results were obtained when the enzyme from the C(4) plant maize was assayed with manganese rather than magnesium and when phosphoenolpyruvate carboxylase from leaves of the C(3) plant wheat (Triticum vulgare Vill.) was assayed with magnesium. However, at pH 7.0 the enzyme from the Crassulacean acid metabolism plant Crassula argentea did not produce a satisfactory single line when plotted against the complex of metal ion and substrate, but did so when the assay pH was raised to 8.0. It is concluded that in general the preferred form of substrate for phosphoenolpyruvate carboxylase is the complex of phosphoenolpyruvate with the metal ion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1055697 | PMC |
http://dx.doi.org/10.1104/pp.88.4.976 | DOI Listing |
FEMS Microbiol Lett
January 2025
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
Phosphoenolpyruvate carboxylase encoded by ppc catalyzes the anaplerotic reaction of oxaloacetate in the TCA cycle in Escherichia coli. Deletion of ppc does not prevent the cells from replenishing oxaloacetate via the glyoxylate shunt, but the ppc-deletion strain almost did not grow on glucose. In the present study, we obtained evolved strains by deleting both ppc and mutS to increase the mutation rate and investigated the mechanisms for improving growth by analyzing the mutated genes.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in , different DH-Fe concentrations (0, 10, 20, and 40 μg·L) were applied to estimate its effects on C and N metabolism and antioxidative capacity in grown under 20°C.
View Article and Find Full Text PDFPhotosynth Res
January 2025
School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA.
Phosphoenolpyruvate (PEP) carboxylase (PEPC) has an anaplerotic role in central plant metabolism but also initiates the carbon concentrating mechanism during C photosynthesis. The C PEPC has different binding affinities (K) for PEP (K) and HCO (K), and allosteric regulation by glucose-6-phosphate (G6-P) compared to non-photosynthetic isoforms. These differences are linked to specific changes in amino acids within PEPC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!