The action of exogenous polyamines (putrescine, spermidine, and spermine) on ;washing' and fusicoccin-stimulated K(+) uptake and H(+) extrusion through the plasmamembrane in maize (Zea mays L., hybrid line Plenus S 516) root apical segments was studied. The results showed that polyamines inhibit the washing-stimulated K(+) influx and H(+) extrusion without interfering with K(+) uptake and H(+) extrusion stimulated by fusicoccin. Spermidine appeared to be the most effective in inhibiting K(+) uptake and H(+) extrusion while putrescine showed a smaller inhibiting action with respect to the others. The analysis of kinetic constants indicated that the polyamines behave as competitive inhibitors with respect to K(+).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1054720 | PMC |
http://dx.doi.org/10.1104/pp.87.1.176 | DOI Listing |
Int J Pharm
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. Electronic address:
Intense inflammatory responses and elevated levels of reactive oxygen species (ROS) extremely exacerbate the pathological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) can mitigate SCI-related inflammation but their production yield remains limited. Alternatively, MSC-extruded nanovesicles (NV) inherit the therapeutic potential from MSCs and have a markedly higher yield than EV.
View Article and Find Full Text PDFJ Control Release
January 2025
Centre de Biophysique Moléculaire, CBM, CNRS UPR4301, Orléans, France. Electronic address:
The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.
View Article and Find Full Text PDFBioorg Chem
December 2024
Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultad de Ciencias, Campus A Zapateira, 15071 A Coruña, Spain. Electronic address:
In this study, a series of BODIPY dyes were synthesized, containing various substituents at meso position. Further functionalization of the BODIPY framework at C2 and C2-C6 position(s) by palladium-catalysed cross-coupling reactions using organoindium reagents (RIn) was efficiently assessed, starting from C2(6)-halogenated BODIPYs, and their optical properties were measured. The cytotoxicity of BODIPY dyes on SH-SY5Y neuronal cells by MTT assay showed that those compounds bearing thien-2-yl and benzonitrile moieties at meso position, exhibited great efficiency in maintaining cell viability under all tested conditions (up to 50 µM for 24 h and 48 h).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
Plant Cell Environ
November 2024
Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China.
Mineral nutrient deficiencies and metal ion toxicities coexist on acid soils. Phosphorus (P) deficiency in plants is generally accompanied with significant levels of leaf manganese (Mn) accumulation. However, the molecular regulatory mechanisms underpinning remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!