The action of exogenous polyamines (putrescine, spermidine, and spermine) on ;washing' and fusicoccin-stimulated K(+) uptake and H(+) extrusion through the plasmamembrane in maize (Zea mays L., hybrid line Plenus S 516) root apical segments was studied. The results showed that polyamines inhibit the washing-stimulated K(+) influx and H(+) extrusion without interfering with K(+) uptake and H(+) extrusion stimulated by fusicoccin. Spermidine appeared to be the most effective in inhibiting K(+) uptake and H(+) extrusion while putrescine showed a smaller inhibiting action with respect to the others. The analysis of kinetic constants indicated that the polyamines behave as competitive inhibitors with respect to K(+).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1054720PMC
http://dx.doi.org/10.1104/pp.87.1.176DOI Listing

Publication Analysis

Top Keywords

uptake extrusion
16
putrescine spermidine
8
spermidine spermine
8
extrusion plasmamembrane
8
plasmamembrane maize
8
extrusion
5
exogenous putrescine
4
uptake
4
spermine uptake
4
maize root
4

Similar Publications

Local delivery of mesenchymal stem cell-extruded nanovesicles through a bio-responsive scaffold for acute spinal cord injury treatment.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. Electronic address:

Intense inflammatory responses and elevated levels of reactive oxygen species (ROS) extremely exacerbate the pathological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) can mitigate SCI-related inflammation but their production yield remains limited. Alternatively, MSC-extruded nanovesicles (NV) inherit the therapeutic potential from MSCs and have a markedly higher yield than EV.

View Article and Find Full Text PDF

The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.

View Article and Find Full Text PDF

Synthesis of BODIPYs using organoindium reagents and survey of their cytotoxicity and cell uptake on nervous system cells.

Bioorg Chem

December 2024

Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultad de Ciencias, Campus A Zapateira, 15071 A Coruña, Spain. Electronic address:

In this study, a series of BODIPY dyes were synthesized, containing various substituents at meso position. Further functionalization of the BODIPY framework at C2 and C2-C6 position(s) by palladium-catalysed cross-coupling reactions using organoindium reagents (RIn) was efficiently assessed, starting from C2(6)-halogenated BODIPYs, and their optical properties were measured. The cytotoxicity of BODIPY dyes on SH-SY5Y neuronal cells by MTT assay showed that those compounds bearing thien-2-yl and benzonitrile moieties at meso position, exhibited great efficiency in maintaining cell viability under all tested conditions (up to 50 µM for 24 h and 48 h).

View Article and Find Full Text PDF
Article Synopsis
  • Nanomedicine using cell membrane coatings has gained interest due to improved targeting and reduced side effects, particularly focusing on treating myocarditis through IRF1-mediated macrophage pyroptosis.
  • Researchers created a zeolitic imidazolate framework-8 (ZIF-8) nano-delivery system encapsulating siRNA aimed at IRF1, which was coated with a hybrid membrane from T lymphocytes and macrophages for efficient targeting.
  • Findings indicated that the developed nanoparticles effectively delivered siRNA, reduced IRF1 expression, and decreased pyroptosis in macrophages, leading to a significant reduction in myocarditis progression in mice with minimal adverse effects.
View Article and Find Full Text PDF

GmSTOP1-3 Increases Soybean Manganese Accumulation Under Phosphorus Deficiency by Regulating GmMATE2/13 and GmZIP6/GmIREG3.

Plant Cell Environ

November 2024

Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China.

Mineral nutrient deficiencies and metal ion toxicities coexist on acid soils. Phosphorus (P) deficiency in plants is generally accompanied with significant levels of leaf manganese (Mn) accumulation. However, the molecular regulatory mechanisms underpinning remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!