The first positive phototropic curvature induced by a pulse of unilateral white irradiation (0.1 watt per square meter, 30 seconds) of etiolated and de-etiolated Sakurajima radish (Raphanus sativus var hortensis f. gigantissimus Makino) hypocotyls was analyzed in terms of differential growth and growth inhibitor contents of the hypocotyls. In both etiolated and de-etiolated hypocotyls, the growth rates at the lighted sides were suppressed whereas those at the shaded ones showed no change. De-etiolation treatment induced a larger difference between the growth rates at the lighted and shaded sides of the hypocotyls, resulting in a larger curvature of de-etiolated seedlings than of etiolated ones. The contents of growth inhibitors, cis- and trans-raphanusanins, increased in the lighted but not in the shaded halves of the hypocotyls of etiolated seedlings. In de-etiolated seedlings, the two inhibitors increased due to the de-etiolation treatment. When de-etiolated seedlings were exposed to a pulse of unilateral irradiation the level of the two inhibitors remained high along the lighted side for 1 h following the light pulse, whereas at the shaded side the contents of the inhibitors abruptly decreased upon transfer to the dark, the difference between their amounts in the lighted and shaded sides being larger than in etiolated seedlings. Another growth inhibitor, raphanusamide, did not respond to the phototropic stimulus, although its amounts increased by the de-etiolation treatment. These data suggest that cis- and trans-raphanusanins are involved in the first positive phototropic response of radish hypocotyls, and that de-etiolation magnifies the phototropic response through induction of a larger lateral gradient of the raphanusanins in the hypocotyls by the phototropic stimulus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1054264 | PMC |
http://dx.doi.org/10.1104/pp.85.2.379 | DOI Listing |
Environ Exp Bot
January 1989
Dept. of Plant Physiology, Agricultural University, Wageningen, The Netherlands.
During phototropic curvature, indolyl-3-acetic acid (IAA) remains evenly distributed in the hypocotyl of sunflower (Helianthus annuus L.) and in the oat (Avena sativa L.) coleoptile.
View Article and Find Full Text PDFPlant Physiol
October 1987
Biological Institute, College of Liberal Arts, Kagoshima University, Korimoto 1-21-30, Kagoshima 890, Japan.
The first positive phototropic curvature induced by a pulse of unilateral white irradiation (0.1 watt per square meter, 30 seconds) of etiolated and de-etiolated Sakurajima radish (Raphanus sativus var hortensis f. gigantissimus Makino) hypocotyls was analyzed in terms of differential growth and growth inhibitor contents of the hypocotyls.
View Article and Find Full Text PDFPlant Physiol
March 1987
Biological Institute, College of Liberal Arts, Kagoshima University, Korimoto 1-21-30, Kagoshima 890, Japan.
When etiolated radish (Raphanus sativus var. hortensis f. gigantissimus Makino) hypocotyls were subjected to a continuous unilateral illumination with white fluorescent light at 0.
View Article and Find Full Text PDFPlant Physiol
August 1986
Biological Institute, College of Liberal Arts, Kagoshima University, Korimoto 1-21-30, Kagoshima 890, Japan.
When etiolated radish (Raphanus sativus var. hortensis f. gigantissimus Makino) hypocotyls were subjected to a continuous unilateral illumination with white fluorescent light (0.
View Article and Find Full Text PDFPlant Physiol
August 1986
Biological Institute, College of Liberal Arts, Kagoshima University, Korimoto 1-21-30, Kagoshima 890, Japan.
Three growth inhibitors which might be involved in phototropism of Sakurajima radish (Raphanus sativus var. hortensis f. gigantissimus Makino) hypocotyls, were isolated as crystalline forms from light-exposed radish seedlings and identified as cis- and trans-raphanusanins and 6-methoxy-2,3,4,5-tetrahydro-1,3-oxazepin-2-one (designated raphanusamide).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!