Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy.

Plant Physiol

Lehrstuhl für Botanik II, Universität Würzburg, Mittlerer Dallenbergweg 64, 8700 Würzburg, Federal Republic of Germany.

Published: June 1987

Comparative studies of chlorophyll a fluorescence, measured with a pulse amplitude modulated fluorometer, and of the pigment composition of leaves, suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light. This conclusion is based on the following findings: (a) exposure of leaves of Populus balsamifera, Hedera helix, and Monstera deliciosa to excess excitation energy (high light, air; weak light, 2% O(2), 0% CO(2)) led to massive formation of zeaxanthin and a decrease in violaxanthin. Over a wide range of conditions, there was a linear relationship between either variable, F(v), or maximum fluorescence, F(m), and the zeaxanthin content of leaves. (b) When exposed to photoinhibitory light levels in air, shade leaves of H. helix had a higher capacity for zeaxanthin formation, at the expense of beta-carotene, than shade leaves of M. deliciosa. Changes in fluorescence characteristics suggested that, in H. helix, the predominant response to high light was an increase in the rate of nonradiative energy dissipation, whereas, in M. deliciosa, photoinhibitory damage to photosystem II reaction centers was the prevailing effect. (c) Exposure of a sun leaf of P. balsamifera to increasing photon flux densities in 2% O(2) and 0% CO(2) resulted initially in increasing levels of zeaxanthin (matched by decreases in violaxanthin) and was accompanied by fluorescence changes indicative of increased nonradiative energy dissipation. Above the light level at which no further increase in zeaxanthin content was observed, fluorescence characteristics indicated photoinhibitory damage. (d) A linear relationship was obtained between the ratio of variable to maximum fluorescence, F(v)/F(m), determined with the modulated fluorescence technique at room temperature, and the photon yield of O(2) evolution, similar to previous findings (O Björkman, B Demmig 1987 Planta 170: 489-504) on chlorophyll fluorescence characteristics at 77 K and the photon yield of photosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056560PMC
http://dx.doi.org/10.1104/pp.84.2.218DOI Listing

Publication Analysis

Top Keywords

fluorescence characteristics
12
zeaxanthin formation
8
xanthophyll cycle
8
fluorescence
8
chlorophyll fluorescence
8
high light
8
linear relationship
8
variable maximum
8
maximum fluorescence
8
zeaxanthin content
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!