Synthesis of a Putative c-Type Cytochrome by Intact, Isolated Pea Chloroplast.

Plant Physiol

Department of Botany, University of California at Davis, Davis, California 95616.

Published: August 1986

In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea (Pisum sativum L.) chloroplasts were incubated with [(14)C]-5-aminolevulinic acid. The major labeled band (M(r) = 43 kilodaltons by lithium dodecyl sulfate-polyacrylamide gel electrophoresis) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H(2)O(2) stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with [(14)C]-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome; however, the possibility that it might be a protein containing a covalently linked linear tetrapyrrole was not ruled out.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1075467PMC
http://dx.doi.org/10.1104/pp.81.4.960DOI Listing

Publication Analysis

Top Keywords

c-type cytochrome
8
[14c]-5-aminolevulinic acid
8
labeled product
8
labeled
5
synthesis putative
4
putative c-type
4
cytochrome intact
4
intact isolated
4
isolated pea
4
pea chloroplast
4

Similar Publications

Targeted delivery has emerged as a critical strategy in the development of novel therapeutics. The advancement of nanomedicine hinges on the safe and precise cell-specific delivery of protein-based therapeutics to the immune system. However, major challenges remain, such as developing an efficient delivery system, ensuring specificity, minimizing off-target effects, and attaining effective intracellular localization.

View Article and Find Full Text PDF

In this study, we selected , one of the primary insect pests of alfalfa, as the experimental insect and infected it with . Transcriptomic and metabolomic analyses were conducted to explore alterations in gene expression and metabolic processes in at 48, 96, and 144 h post infection with . The transcriptomic analysis unveiled that infection boosted immune responses in tubercula, affecting carbohydrate metabolism, cytochrome P450 activity, lysosome function, apoptosis regulation, phagosome formation, glutathione metabolism, amino acid metabolism, and pathogen response pathways.

View Article and Find Full Text PDF

Purification and Electron Transfer from Soluble c-Type Cytochrome TorC to TorA for Trimethylamine N-Oxide Reduction.

Int J Mol Sci

December 2024

Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.

The enterobacterium present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. TorA is anchored to the membrane via TorC, a pentahemic -type cytochrome which receives the electrons from the menaquinol pool.

View Article and Find Full Text PDF

Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria.

J Hazard Mater

December 2024

State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:

Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.

View Article and Find Full Text PDF

Nitrogen emissions up to the standard are a major challenge for wastewater treatment plants in alpine and high-altitude areas. The dosing of carriers can improve the nitrogen removal efficiency of the system at low temperatures; however, the mechanism of action of sludge and biofilm in nitrogen removal remains unclear. This study elucidated the internal mechanism of nitrogen removal via the function of microbial metabolism in sludge and biofilm at low temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!