A new method for the rapid and quantitative fluorometric determination of callose is described. In suspension-cultured cells of Glycine max, synthesis of callose starts within 20 minutes of treatment with chitosan and parallels over hours the accumulation of 1,3-linked glucose in the wall. Poly-l-lysine also elicits callose synthesis. The effect of chitosan is enhanced by Polymyxin B at low concentrations; this antibiotic alone at higher concentrations can also induce callose synthesis. Callose synthesis is immediately stopped when external Ca(2+) is bound by ethylene glycolbis-(2-aminoethyl ether)-N,N'-tetraacetate or cation exchange beads, and partly recovers upon restoration of 15 micromolar Ca(2+).Callose synthesis is observed only when membrane perturbation causing electrolyte leakage from the cells is induced by one of the above treatments. It does not appear to be due to de novo synthesis or proteolytic activation of 1,3-beta-d-glucan synthase. It is concluded that this Ca(2+)-dependent enzyme is directly activated by the influx of Ca(2+) occurring concomitantly with the leakage of cell constituents. This suggestion is also discussed in conjunction with the chitosan-induced synthesis of phytoalexin in the same cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1064561 | PMC |
http://dx.doi.org/10.1104/pp.77.3.544 | DOI Listing |
BMC Plant Biol
December 2024
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland.
Background: Silicon has an important role in regulating water management in plants. It is deposited in cell walls and creates a mechanical barrier against external factors. The aim of this study was to determine the role of silicon supplementation in the synthesis and distribution of callose in oilseed rape roots and to characterize the modifications of cell wall structure of these organs after exposure to drought stress.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China.
Non-host resistance (NHR) governs defense responses against a broad range of potential pathogen species in contrast with host resistance. To identify specific genes involved in disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana and identified glycosyltransferase (NbGT) as an essential component of NHR. NbGT silencing enhanced the hypersensitivity response, reactive oxygen species response, and callose deposition in N.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina.
Chemosphere
December 2024
Department of Botany, University of Gour Banga, Malda, 732103, West Bengal, India.
Biofabricated selenium nanoparticles (Se-NPs) and sodium nitroprusside-derived nitric oxide (NO) singly or in combination was evaluated to improve tolerance to aluminum (Al) stress in rice (Oryza sativa L. cv. Swarna Sub1).
View Article and Find Full Text PDFJ Appl Microbiol
December 2024
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Aims: Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa L.). The aim of this study was to investigate the biocontrol potential of rice rhizosphere actinomycetes against M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!