Rhythmicity in ethylene production in cotton seedlings.

Plant Physiol

Plant Hormone Laboratory, Beltsville Agricultural Research Center (West), United States Department of Agriculture, Beltsville, Maryland 20705.

Published: June 1984

Cotyledons of cotton (Gossypium hirsutum L.) seedlings grown under a photoperiod of 12 hour darkness and 12 hour light showed daily oscillations in ethylene evolution. The rate of ethylene evolution began to increase toward the end of the dark period and reached a maximum rate during the first third of the light period, then it declined and remained low until shortly before the end of the dark period. The oscillations in ethylene evolution occurred in young, mature, and old cotyledons (7 to 21 day old). These oscillations in ethylene evolution seemed to be endogenously controlled since they continued even when the photoperiod was inverted. Moreover, in continuous light the oscillations in ethylene evolution persisted, but with shorter intervals between the maximal points of ethylene evolution. In continuous darkness the oscillations in ethylene evolution disappeared. The conversion of [3,4-(14)C]methionine into [(14)C] ethylene followed the oscillations in ethylene evolution in the regular as well as the inverted photoperiod. On the other hand, the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene did not follow the oscillations in ethylene evolution, but was affected directly by the light conditions. Always, light decreased and darkness increased the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene. It is concluded that in the biosynthetic pathway of ethylene the conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene is directly affected by light while an earlier step is controlled by an endogenous rhythm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066936PMC
http://dx.doi.org/10.1104/pp.75.2.493DOI Listing

Publication Analysis

Top Keywords

ethylene evolution
36
oscillations ethylene
28
ethylene
14
1-aminocyclopropane-1-carboxylic acid
12
acid ethylene
12
evolution
9
dark period
8
conversion applied
8
applied 1-aminocyclopropane-1-carboxylic
8
directly light
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!