Shoots of 16-day-old soybeans (Glycine max L. Merr. cv Ransom) were chilled to 10 degrees C for 7 days and monitored for visible signs of damage, ultrastructural changes, perturbations in fluorescence of chlorophyll (Chl), and quantitative changes in Chl a and b and associated pigments. Precautions were taken to prevent the confounding effects of water stress. A technique for the separation of lutein and zeaxanthin was developed utilizing a step gradient with the high performance liquid chromatograph. Visible losses in Chl were detectable within the first day of chilling, and regreening did not occur until the shoots were returned to 25 degrees C. Ultrastructurally, unstacking of chloroplast grana occurred, and the envelope membranes developed protrusions. Furthermore, the lipids were altered to the point that the membranes were poorly stabilized by a glutaraldehyde/osmium double-fixation procedure. Chl fluorescence rates were greatly reduced within 2 hours after chilling began and returned to normal only after rewarming. The rapid loss of Chl that occurred during chilling was accompanied by the appearance of zeaxanthin and a decline in violaxanthin. Apparently a zeaxanthin-violaxanthin epoxidation/de-epoxidation cycle was operating. When only the roots were chilled, no substantial changes were detected in ultrastructure, fluorescence rates, or pigment levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066762PMC
http://dx.doi.org/10.1104/pp.74.4.749DOI Listing

Publication Analysis

Top Keywords

fluorescence rates
8
chl
5
chloroplast ultrastructure
4
ultrastructure chlorophyll
4
fluorescence
4
chlorophyll fluorescence
4
fluorescence pigment
4
pigment composition
4
composition chilling-stressed
4
chilling-stressed soybeans
4

Similar Publications

The incidence of cervical cancer continues to rise in underdeveloped regions due to low human papillomavirus (HPV) vaccination rates and inadequate screening systems. To achieve convenient, rapid, and accurate detection of HPV, we developed a three-wire lateral flow strip assay system based on dual-OR logic gates for rapid and simultaneous detection of HPV subtypes 16 and 18 in a single test. The system combines three-branch-catalytic hairpin assembly (TCHA)-mediated signal amplification with simple OR logic gate-based signal output to improve detection rates while enabling HPV 16/18 subtype identification.

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing .

Nano Lett

January 2025

Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.

Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.

View Article and Find Full Text PDF

Background: Intraoperative and postoperative biliary injuries remain significant complications of laparoscopic common bile duct exploration (LCBDE). Indocyanine green (ICG) has been shown to significantly reduce injuries caused by intraoperative operational errors. We found that the J-tube can reduce postoperative strictures and injuries to the common bile duct.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!