Cell walls of suspension-cultured cells of Rosa glauca were fractionated by two different extraction procedures. The first involved a stepwise fractionation scheme based on alkaline extraction. The second took advantage of the powerful cellulose solvent system N-methylmorpholine N-oxide/dimethyl sulfoxide which is capable of solubilizing whole cell walls. From the analytical composition of each solubilized fraction and of the corresponding residues, the fate of each type of cell wall polysaccharide constituent was followed at each step of the extraction scheme and the mode of action of the extractant was interpreted. Although the two fractionation procedures were very different, they yielded very similar cellulosic complex residues and extracts, thus delimiting two blocks of polysaccharides in the cell wall. The cellulose residues still comprised uronic acid-containing polysaccharides and hemicelluloses in association with cellulose. Graded acid hydrolysis provided evidence for the central role of a homogalacturonan core interconnecting xyloglucans and arabinogalactans. A tentative model showing the possible interaction existing between the constituent polysaccharides still associated to cellulose after alkaline extraction is presented. Hydrogen bonding between xyloglucan and cellulose is confirmed, and glycosidic linkages between xyloglucans and pectic polymers are suggested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066747 | PMC |
http://dx.doi.org/10.1104/pp.74.3.687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!