AI Article Synopsis

Article Abstract

The monoterpene ketone l-menthone is specifically converted to l-menthol and l-menthyl acetate and to d-neomenthol and d-neomenthyl-beta-d-glucoside in mature peppermint (Mentha piperita L. cv. Black Mitcham) leaves. The selectivity of product formation results from compartmentation of the menthol dehydrogenase with the acetyl transferase and that of the neomenthol dehydrogenase with the glucosyl transferase. Soluble enzyme preparations, but not particulate preparations, from mature peppermint leaves catalyzed the NADPH-dependent reduction of l-menthone to both epimeric alcohols, and the two dehydrogenases responsible for these stereospecific transformations were resolved by affinity chromatography on Mātrex Gel Red A. Both enzymes have a molecular weight of approximately 35,000, possess a K(m) for NADPH of about 2 x 10(-5)m, are very sensitive to inhibition by thiol-directed reagents, and are not readily reversible. The menthol dehydrogenase showed a pH optimum at 7.5, exhibited a K(m) for l-menthone of about 2.5 x 10(-4)m, and also reduced d-isomenthone to d-neoisomenthol. The neomenthol dehydrogenase showed a pH optimum at 7.6, exhibited a K(m) for l-menthone of about 2.2 x 10(-5)m, and also reduced d-isomenthone to d-isomenthol. These stereochemically distinct, but otherwise similar, enzymes are of key importance in determining the metabolic fate of menthone in peppermint, and they are probably typical of the class of dehydrogenases thought to be responsible for the metabolism of monoterpene ketones during plant development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC426349PMC
http://dx.doi.org/10.1104/pp.69.5.1013DOI Listing

Publication Analysis

Top Keywords

peppermint mentha
8
mentha piperita
8
mature peppermint
8
menthol dehydrogenase
8
neomenthol dehydrogenase
8
dehydrogenase optimum
8
optimum exhibited
8
exhibited l-menthone
8
reduced d-isomenthone
8
l-menthone
5

Similar Publications

Self-sufficient biocatalytic cascade for the continuous synthesis of danshensu in flow.

Appl Microbiol Biotechnol

January 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the aerial parts of  ×  L. (peppermint oil) when used as a sensory additive in feed and in water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that that peppermint oil is safe for all animal species at the maximum use level of 12 mg/kg complete feed.

View Article and Find Full Text PDF

Comparative Evaluation of Different Mint Species Based on Their In Vitro Antioxidant and Antibacterial Effect.

Plants (Basel)

January 2025

Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly utca 1., H-2100 Gödöllő, Hungary.

In our research six different mint species (peppermint, spearmint (five different chemotypes), Horse mint, mojito mint, apple mint (two different chemotypes), bergamot mint) have been evaluated by referring to their chemical (essential oil (EO) content and composition) and in vitro biological (antibacterial, antioxidant effect) characteristics. The EO amount of the analyzed mint populations varied between 1.99 and 3.

View Article and Find Full Text PDF

Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (), aloe vera (), calendula (), curcumin (), lavender (), licorice (), peppermint (), and evening primrose ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!