Movement of THO and tritium-labeled photoassimilate was studied in intact fronds and frond cuttings of Macrocystis integrifolia following labeling of a mature blade by tritiated water. Both THO and tritium-labeled assimilate moved from the source blade to sink areas at velocities comparable to those recorded earlier for (14)C- and (32)P-labeled compounds. In intact fronds and frond cuttings, THO and tritium-labeled assimilate showed a declining gradient with increasing distance from the source. In the exudate collected from the basal cut end of the frond, there was a marked increase in radioactivity with time in the photoassimilate, but no such gradient was evident for THO. These results support the idea that, although both tritium-labeled assimilate and THO move in the sieve elements, THO is rapidly exchanged with water in the tissues surrounding the sieve elements. Finally, it is shown that THO is transported to the sink and there "unloaded"; indeed, it can move out of the plant itself. The data on velocity and directionality of transport as well as unloading of THO at the sink are discussed, along with computations on specific mass transfer, and favor the idea that Münch's pressure-flow hypothesis is applicable in Macrocystis for long distance translocation of photoassimilates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC440532PMC
http://dx.doi.org/10.1104/pp.66.1.66DOI Listing

Publication Analysis

Top Keywords

tho tritium-labeled
12
tritium-labeled assimilate
12
tho
9
long distance
8
macrocystis integrifolia
8
movement tho
8
intact fronds
8
fronds frond
8
frond cuttings
8
sieve elements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!