Photosynthetic Rates of Sporophytes and Gametophytes of the Fern, Todea barbara.

Plant Physiol

Department of Biology, University of Massachusetts, Boston, Massachusetts 02125.

Published: April 1980

The photosynthetic rates of intact sporophytes or gametophytes of the fern Todea barbara grown in sterile culture were measured using an infrared gas analyzer. Sporophytes consisted of single whole plants with roots and leaves grown in tubes of agar. Gametophytes were grown as several plants covering the surface of the agar. Sporophytes had photosynthetic rates at light saturation of 8.50 microliters CO(2) per hour per milligram dry weight and 1,300 microliters CO(2) per hour per milligram chlorophyll, whereas rates for gametophytes were lower, 2.36 microliters CO(2) per hour per milligram dry weight and 236 microliters CO(2) per hour per milligram chlorophyll.O(2) inhibited the photosynthetic rates of both plants to a degree typical of C-3 plants. The light-saturated photosynthetic rates of sporophytes increased 42% and gametophytes increased 27% when the O(2) concentration was changed from 21 to 1%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC440386PMC
http://dx.doi.org/10.1104/pp.65.4.584DOI Listing

Publication Analysis

Top Keywords

photosynthetic rates
20
microliters co2
16
co2 hour
16
hour milligram
16
rates sporophytes
8
sporophytes gametophytes
8
gametophytes fern
8
fern todea
8
todea barbara
8
milligram dry
8

Similar Publications

Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M-M) with the C grass Melilotus officinalis and the C grass Setaria viridis through greenhouse experiments.

View Article and Find Full Text PDF

Nitric oxide (NO) positively contributes to maintaining a high photosynthetic rate in waterlogged-wheat plants by maintaining high stomatal conductance (g), mesophyll conductance (g), and electron transport rates in PSII (J). However, the molecular mechanisms underlying the synergistic regulation of photosynthetic characteristics during wheat waterlogging remain unclear. Pot experiments were conducted with two cultivars: Yangmai15 (YM15: high waterlogging-tolerance capacity) and Yangmai24 (YM24: conventional waterlogging-tolerance capacity).

View Article and Find Full Text PDF

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.

View Article and Find Full Text PDF

A dataset of forest regrowth in globally key deforestation regions.

Sci Data

January 2025

Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China.

Deforestation-induced forest loss largely affects both the carbon budget and ecosystem services. Subsequent forest regrowth plays a crucial role in ecosystem restoration and carbon replenishment. However, there is an absence of comprehensive datasets explicitly delineating the forest regrowth following deforestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!