A study has been made of the effects of the inhibitors carbonylcyanide m-chlorophenylhydrazone (CCCP), 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), and of anoxia on the light-sensitive membrane potential of Vallisneria leaf cells. The present results are compared with the known effects of these inhibitors on ion transport and photosynthesis (Prins 1974 Ph.D thesis). The membrane potential is composed of a diffusion potential plus an electrogenic component. The electrogenic potential is about -13 millivolts in the dark and -80 millivolts in the light. The inhibitory effect of DCMU and CCCP on the electrogenic mechanisms strongly depends on the light intensity used, the inhibition being less at a higher light intensity. This is of significance in view of the often conflicting results obtained with these inhibitors. With ion transport in Vallisneria the electrogenic pump derives its energy from phosphorylation; however, the process which causes the initial light-induced hyperpolarization and the process that keeps the membrane potential at a steady hyperpolarized state in the light have different energy requirements. The action of photosystem I alone is sufficient to induce the initial hyperpolarization. For continuous operation in the light the activity of photosystem II also is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC440255PMC
http://dx.doi.org/10.1104/pp.65.1.1DOI Listing

Publication Analysis

Top Keywords

membrane potential
12
vallisneria leaf
8
leaf cells
8
effects inhibitors
8
inhibitors ion
8
ion transport
8
light intensity
8
potential
5
light
5
membrane
4

Similar Publications

Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology.

View Article and Find Full Text PDF

Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.

View Article and Find Full Text PDF

The time course and organization of hippocampal replay.

Science

January 2025

Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.

The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.

View Article and Find Full Text PDF

DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!