Promotion of Sorghum Callus Growth by the s-Triazine Herbicides.

Plant Physiol

Department of Agronomy, University of Nebraska, Lincoln, Nebraska 68503.

Published: December 1975

Growth-promoting action of simazine and other s-triazine herbicides was detected by the use of sorghum (Sorghum bicolor [L]. Moench) callus tissue and the chlorophyll retention test. Soil application of simazine [2-chloro-4, 6-bis(ethylamino)-s-triazine] at sublethal levels nearly doubled the growth-promoting action of sorghum root exudates. Treated plants yielded up to 26% more total protein than untreated plants. This indicated that the level of callus growth-promoting action in the root exudate of the plant has a positive effect on its final total protein yield and confirms a positive effect of simazine on total protein content in certain instances. The results may provide a new understanding of the mode of action of s-triazines applied at sublethal levels in increasing protein content and certain enzymic activities of treated plants. It is speculated that the growth-promoting action of these herbicides is hormonal in nature and most likely kinetin-like.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC541916PMC
http://dx.doi.org/10.1104/pp.56.6.747DOI Listing

Publication Analysis

Top Keywords

growth-promoting action
16
total protein
12
s-triazine herbicides
8
sublethal levels
8
treated plants
8
protein content
8
action
5
promotion sorghum
4
sorghum callus
4
callus growth
4

Similar Publications

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.

View Article and Find Full Text PDF

Previous research demonstrated the growth promoting benefits of an essential oil/oligosaccharide blend (EO; Stay Strong, Ralco, Inc.) or an encapsulated sodium butyrate (C4; Ultramix GF, Adisseo, Inc.) fed to neonatal calves.

View Article and Find Full Text PDF

Background: Hatch weight (HW) affects broiler growth and low HW (LHW) often leads to suboptimal performance. Sodium butyrate (SB) has been shown to promote growth through enhanced intestinal health. This study investigated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks.

View Article and Find Full Text PDF

Cancer is a significant global health concern, responsible for mortality and morbidity of individuals. It is characterized by uncontrolled cellular growth, tumor formation, and potential metastasis. The immune system is pivotal in recognizing and eliminating cancerous cells, with immune cells such as T cells, B cells, natural killer cells (NK), and dendritic cells playing critical roles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!