Etioplasts capable of incorporating (14)C-leucine into protein have been isolated from dark-grown pea and wheat plants. The requirements for leucine incorporation for etioplasts were similar to those for chloroplasts. An ATP-generating system, Mg(2+), and GTP were required. The amino-acid-incorporation activity of etioplasts from wheat was comparable to that of chloroplasts on an RNA basis, whereas the activity of pea etioplasts was about 50% of the activity of pea chloroplasts. The incorporation of leucine into protein by etioplasts and chloroplasts from pea and wheat was inhibited by chloramphenicol, and to a slight extent by cycloheximide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC367308 | PMC |
http://dx.doi.org/10.1104/pp.50.1.19 | DOI Listing |
Plant Mol Biol
January 2025
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.
View Article and Find Full Text PDFBackground: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFViroids, small circular non-coding RNAs, act as infectious pathogens in higher plants, demonstrating high stability despite consisting solely of naked RNA. Their dependence of replication on host machinery poses the question of whether RNA modifications play a role in viroid biology. Here, we explore RNA modifications in the avocado sunblotch viroid (ASBVd) and the citrus exocortis viroid (CEVd), representative members of viroids replicating in chloroplasts and the nucleus, respectively, using LC - MS and Oxford Nanopore Technology (ONT) direct RNA sequencing.
View Article and Find Full Text PDFMol Plant
January 2025
Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:
Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!