Single cell electropotentials of barley (Hordeum vulgare L., cv. ;Compana') root cortex were measured at different external concentrations of KCl in the presence of Ca(2+). The roots were low in salt from seedlings grown on 0.5 mm aerated CaSO(4) solution. Thus, the conditions were equivalent to those used to define the dual mechanisms found with radioactive tracer-labeled ion uptake. In 0.5 mm CaSO(4) alone, there is an increase with time of cell negativity from about -65 millivolts 15 minutes after cutting segments to about -185 millivolts in 6 to 8 hours. Two possible hypotheses, not mutually exclusive, are offered to explain this aging effect: that cutting exposes plasmodesmata which are leaky initially but which seal in time, and that some internal factors, e.g., hormones diffusing from the apex, have a regulatory effect on the cell potential, an influence which becomes dissipated in isolated segments and permits the development of a higher potential difference. In any case changes in selective ion transport must be involved. The cell potentials at KCl concentrations above 2.0 mm are more negative than would be expected for a passive diffusion potential. It is suggested that this discrepancy may be due to an electrogenic pump or to a higher K(+) concentration in the cytoplasm than in the remainder of the cell, or perhaps to both. Whether there is a clear relationship between cell potential and mechanisms 1 and 2 of cation transport depends upon whether the cell potentials of freshly cut or of aged tissue represent the values relevant to intact roots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC365815PMC
http://dx.doi.org/10.1104/pp.47.1.76DOI Listing

Publication Analysis

Top Keywords

ion uptake
8
cell potential
8
cell potentials
8
cell
7
electrical potential
4
potential differences
4
differences cells
4
cells barley
4
barley roots
4
roots relation
4

Similar Publications

Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.

View Article and Find Full Text PDF

The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.

View Article and Find Full Text PDF
Article Synopsis
  • Colorectal cancer (CRC) is a major cause of cancer deaths, and oxaliplatin (OXA) is a primary treatment that faces challenges due to the tumor microenvironment (TME).
  • A new multifunctional nanosystem, Rg3-Lip-OXA/CaO, uses Ginsenoside Rg3 liposomes to target CRC cells, delivering OXA and calcium peroxide (CaO) together.
  • Research showed that this nanosystem had good stability and release properties, effectively targeted cancer cells, and significantly suppressed tumor growth in mice, while also showing manageable acute toxicity.
View Article and Find Full Text PDF

Preclinical and First-In-Human Imaging of Novel [F]F-FAPI-FUSCC-07 Tracer: Comparative Prospective Study with [F]F-FAPI-42 and [F]F-FAPI-74.

Mol Pharm

January 2025

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties.

View Article and Find Full Text PDF

Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy.

ACS Appl Mater Interfaces

January 2025

Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.

Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!