In vitro induced differentiation of mouse embryonic stem cells (ES-5 cells), derived from 5-day 129 mouse blastocyst was studied with retinoic acid (RA) and dibutyryl cyclic adenosine monophosphate (dB-cAMP). RA only or RA with dBcAMP together can both induce monolayer ES-5 cells to differentiate into cells of two types: neuron-like cells and fibroblast-like cells. After treated with 10(-6)mol/L RA for 6 days, the differentiated cells were about 80% of all cells, among which most cells were fibroblast-like cells and others were neuron-like cells. While after 6 days of treatment with 10(-6)mol/L RA and 1 mmol/L dBcAMP, the ratio of differentiated cells can be up to 90-95%, and most cells (about 90-95% of differentiated cells) are neuron-like cells. Immunocytochemical analysis of phenotypic markers, especially GFAP and laminin, showed that the neuron-like cells were glia cells. DBcAMP affected the direction and efficiency of induction by RA. The induced differentiation by RA on attached aggregated ES-5 cells was studied as well. In this case, more cell types appeared, such as epitheloid cells, fibroblast-like cells and spindle shaped cells and so on. The exact nature of these differentiated cells was not identified. After attached culture for about 15 days, rhythmically contracting cardiac-like muscle cells were most attractive among those several differentiated cell types. The change of phenotypic markers during induced differentiation of ES-5 cells in monolayer and aggregated state was summarized in table 1. Transforming growth factor-beta 1 (TGF-beta 1) was also examined in undifferentiated and differentiated cells. Untreated ES-5 cells showed positive immunofluorescent reaction to TGF-beta 1 and various differentiated cells showed different reactions. Glia cells and cardiac-like cells displayed a much stronger TGF-beta 1 reaction. These results indicate that the exact role played by TGF-beta 1 during induced differentiation needs further investigation. The different effect of RA on monolayer and aggregated ES cells and the possible significance of cell to cell interaction in the latter case are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cells
31
differentiated cells
24
es-5 cells
20
induced differentiation
16
neuron-like cells
16
cells fibroblast-like
12
fibroblast-like cells
12
differentiation mouse
8
mouse embryonic
8
embryonic stem
8

Similar Publications

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Regulating the Thermodynamic Uniformity and Kinetic Diffusion of Zinc Anodes for Deep Cycling of Ah-Level Aqueous Zinc-Metal Batteries.

ACS Nano

January 2025

Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.

View Article and Find Full Text PDF

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!