Iron, the Limiting Element in a Chlorosis: Part II. Copper-Phosphorus Induced Chlorosis Dependent upon Plant Species and Varieties.

Plant Physiol

SOIL AND WATER CONSERVATION RESEARCH BRANCH, U. S. DEPARTMENT OF AGRICULTURE, BELTSVILLE, MARYLAND.

Published: September 1955

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC540689PMC
http://dx.doi.org/10.1104/pp.30.5.457DOI Listing

Publication Analysis

Top Keywords

iron limiting
4
limiting element
4
element chlorosis
4
chlorosis copper-phosphorus
4
copper-phosphorus induced
4
induced chlorosis
4
chlorosis dependent
4
dependent plant
4
plant species
4
species varieties
4

Similar Publications

Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer.

Front Bioeng Biotechnol

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.

A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.

View Article and Find Full Text PDF

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

Mn-doped MOF nanoparticles mitigating hypoxia via in-situ substitution strategy for dual-imaging guided combination treatment of microwave dynamic therapy and chemotherapy.

J Colloid Interface Sci

January 2025

The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:

Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

Although iron-doped hydroxyapatite (Fe-HAP) and its composites have been reported to immobilize arsenic (As), lead (Pb), and cadmium (Cd), its practical application is limited by the inefficient release of iron and phosphate. In this study, Ochrobactrum anthropic, a phosphate-solubilizing bacterium isolated from a lead-zinc smelting site, was employed to enhance multi-heavy metal immobilization in Fe-HAP-amended soils. O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!