Pericryptal fibroblasts (PFs), a class of myofibroblasts, have strongly been implicated in the regulation of villous structure because of their location close to crypts and their ability to secrete cytokines affecting intestinal epithelial cell proliferation and differentiation. Recently, mast cells (MCs) have also been involved in the homeostasis of villous architecture. As myofibroblasts arise in a wide variety of settings concurrently with a local increase in the number of tissue MCs, we calculated in this study the density of both PF and distinct pericryptal MC phenotypes in the mucosa of human duodenum showing normal, defective, or atrophic villous profiles. In addition, we evaluated the statistical association between PF-MC densities and each pattern of villous architecture. Finally, we correlated the density of PF with the density of pericryptal MC phenotypes. For this purpose, samples taken by endoscopy from 30 patients complaining of inflammatory bowel disorders were studied by immunohistochemistry. The densities of alpha-smooth muscle actin-positive PFs as well as tryptase-, chymase-, and c-kit-positive MCs were determined in the crypt lamina propria. Villous architecture was found to be significantly associated with the number of PFs and tryptase-, chymase-, c-kit-positive MCs in the lamina propria (ANOVA group effect P < 0.001). High density of both PFs and MCs was found in intestinal samples with normal villous morphology while lower densities were associated with defective or atrophic villous profiles (Tukey's test for multiple comparison P < 0.001). In addition, a significant correlation was found between PF density and the density of each pericryptal MC phenotype (vs. tryptase-positive MCs, r = 0.913; vs. chymase-positive MC, r = 0.905; vs. c-kit-positive MC, r = 0.927; P < 0.001 in all cases). This study provides morphological support for an important cooperation between PFs and MCs in maintaining normal villous architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.a.20325DOI Listing

Publication Analysis

Top Keywords

villous architecture
20
lamina propria
12
villous
9
pericryptal fibroblasts
8
density distinct
8
crypt lamina
8
human duodenum
8
homeostasis villous
8
pericryptal phenotypes
8
defective atrophic
8

Similar Publications

Phase-contrast micro-tomography ([Formula: see text]CT) with synchrotron radiation can aid in the differentiation of subtle density variations in weakly absorbing soft tissue specimens. Modulation-based imaging (MBI) extracts phase information from the distortion of reference patterns, generated by periodic or randomly structured wavefront markers (e.g.

View Article and Find Full Text PDF

A new species in sect. (Begoniaceae) from Guangxi, South China.

PhytoKeys

December 2024

Dongguan Botanical Garden, Dongguan 523086, China Dongguan Botanical Garden Dongguan China.

Although Guangxi represents one of the distribution centres of begonias in China, the sect. Diploclinium (Wright) A. DC is not well documented herein.

View Article and Find Full Text PDF

Organoid generation from trophoblast stem cells highlights distinct roles for cytotrophoblasts and stem cells in organoid formation and expansion.

Placenta

December 2024

Department of Obstetrics, Gynaecology and Reproductive Science, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand. Electronic address:

Background: Organoids are stem-cell derived, self-organised, three-dimensional cultures that improve in vitro recapitulation of tissue structure. The generation of trophoblast organoids using primary placental villous digests (containing cytotrophoblasts and trophoblast stem cells (TSC)) improved high-throughput assessment of early trophoblast differentiation. However, the relative contributions of cytotrophoblasts and TSCs to trophoblast organoid growth and differentiation remain unclear, with implications for model interpretation.

View Article and Find Full Text PDF

Hedgehog Signalling Pathway and Its Role in Shaping the Architecture of Intestinal Epithelium.

Int J Mol Sci

November 2024

Laboratory of Analysis of Gastrointestinal Tract Protective Barrier, Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland.

The hedgehog (Hh) signalling pathway plays a key role in both embryonic and postnatal development of the intestine and is responsible for gut homeostasis. It regulates stem cell renewal, formation of the villous-crypt axis, differentiation of goblet and Paneth cells, the cell cycle, apoptosis, development of gut innervation, and lipid metabolism. Ligands of the Hh pathway, i.

View Article and Find Full Text PDF

Successful pregnancy relies directly on the placenta's complex, dynamic, gene-regulatory networks. Disruption of this vast collection of intercellular and intracellular programs leads to pregnancy complications and developmental defects. In the present study, we generated a comprehensive, spatially resolved, multimodal cell census elucidating the molecular architecture of the first trimester human placenta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!