Increasing exposure to environmental endocrine disruptor, xeno-estrogen, is a serious hazard to male reproductive activity. To explore possible genetic control in susceptibility to xeno-estrogen, the weight reduction of testes induced by the continuous administration of a synthetic estrogen, diethylstilbesterol, were investigated by quantitative trait analysis in LEXF and FXLE recombinant inbred strain rats, consisting of 21 independent strains, 9 of their substrains, parental F344/Stm and LE/Stm strains, and (F344 x LE)F1. For the weight of testes, one highly significant quantitative trait locus (QTL) and one significant QTL were mapped on chromosomes 7 and 1, respectively. The QTL on chromosome 7 is closely associated with c-myc. Pituitary weight and serum prolactin were also variable among recombinant inbred strains, but no QTL was detected for them in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1538/expanim.55.91DOI Listing

Publication Analysis

Top Keywords

quantitative trait
12
recombinant inbred
12
weight reduction
8
reduction testes
8
lexf fxle
8
fxle recombinant
8
inbred strain
8
strain rats
8
trait loci
4
loci determining
4

Similar Publications

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for benign prostatic hyperplasia.

Sci Rep

January 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, People's Republic of China.

Benign prostatic hyperplasia (BPH) is a prevalent urinary system disorder. Despite evidence of a significant genetic component from previous studies, the specific pathogenic genes and biological mechanisms are still largely unknown. The study utilized the FinnGen R10 dataset, encompassing 177,901 individuals (36,601 cases and 141,300 controls), and the GTEx v8 EQTLs files to conduct single-tissue and cross-tissue transcriptome-wide association studies (TWAS).

View Article and Find Full Text PDF

Caution when using network partners for target identification in drug discovery.

HGG Adv

January 2025

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.

View Article and Find Full Text PDF

Using Quantitative Trait Locus Mapping and Genomic Resources to Improve Breeding Precision in Peaches: Current Insights and Future Prospects.

Plants (Basel)

January 2025

The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.

Modern breeding technologies and the development of quantitative trait locus (QTL) mapping have brought about a new era in peach breeding. This study examines the complex genetic structure that underlies the morphology of peach fruits, paying special attention to the interaction between genome editing, genomic selection, and marker-assisted selection. Breeders now have access to precise tools that enhance crop resilience, productivity, and quality, facilitated by QTL mapping, which has significantly advanced our understanding of the genetic determinants underlying essential traits such as fruit shape, size, and firmness.

View Article and Find Full Text PDF

is a member of the cruciferous family with rich glucosinolate (GSL) content, particularly glucobrassicin (3-indolylmethyl glucosinolate, I3M), that can be metabolized into indole-3-carbinol (I3C), a compound with promising anticancer properties. To unravel the genetic mechanism influencing I3C content in rapeseed seedlings, a comprehensive study was undertaken with a doubled haploid (DH) population. By quantitative trait loci (QTL) mapping, seven QTL that were located on A01, A07, and C04 were identified, with the most significant contribution to phenotypic variation observed on chromosome A07 (11.

View Article and Find Full Text PDF

Genome-Wide Association and Genomic Prediction of Alfalfa ( L.) Biomass Yield Under Drought Stress.

Int J Mol Sci

January 2025

Plant Germplasm Introduction and Testing Research Unit, USDA-ARS, Prosser, WA 99350, USA.

Developing drought-resistant alfalfa ( L.) that maintains high biomass yield is a key breeding goal to enhance productivity in water-limited areas. In this study, 424 alfalfa breeding families were analyzed to identify molecular markers associated with biomass yield under drought stress and to predict high-merit plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!