The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, mutating YB-1 at Ser(102), which resides in the DNA-binding domain, prevented growth induction. We reasoned that the underlying cause for growth attenuation by YB-1(Ser(102)) is through the regulation of EGFR and/or HER-2. The initial link between YB-1 and these receptors was sought by screening primary tumor tissue microarrays. We determined that YB-1 (n = 389 cases) was positively associated with EGFR (P < 0.001, r = 0.213), HER-2 (P = 0.008, r = 0.157), and Ki67 (P < 0.0002, r = 0.219). It was inversely linked to the estrogen receptor (P < 0.001, r = -0.291). Overexpression of YB-1 in a breast cancer cell line increased HER-2 and EGFR. Alternatively, mutation of YB-1 at Ser(102) > Ala(102) prevented the induction of these receptors and rendered the cells less responsive to EGF. The mutant YB-1 protein was also unable to optimally bind to the EGFR and HER-2 promoters based on chromatin immunoprecipitation. Furthermore, knocking down YB-1 with small interfering RNA suppressed the expression of EGFR and HER-2. This was coupled with a decrease in tumor cell growth. In conclusion, YB-1(Ser(102)) is a point of molecular vulnerability for maintaining the expression of EGFR and HER-2. Targeting YB-1 or more specifically YB-1(Ser(102)) are novel approaches to inhibiting the expression of these receptors to ultimately suppress tumor cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-3561DOI Listing

Publication Analysis

Top Keywords

egfr her-2
16
tumor cell
12
cell growth
12
yb-1
9
y-box binding
8
binding protein-1
8
growth
8
epidermal growth
8
growth factor
8
factor receptor
8

Similar Publications

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

To assess whether metabolic syndrome can be used as a reference index to evaluate the efficacy of neoadjuvant chemotherapy treatment for breast cancer (BC). Seventy cases of female BC patients who received neoadjuvant chemotherapy treatment and surgical treatment at the Glandular Surgery Department of Hebei Provincial People's Hospital from January 2021 to December 2023 were retrospectively collected, and clinical data such as puncture pathology were recorded. The clinical data were analyzed by 1-way analysis using the χ2 test, and further multifactorial logistic regression analysis was performed for statistically significant differences.

View Article and Find Full Text PDF

Apatinib and trastuzumab-based chemotherapy for heavily treated primary trastuzumab-resistant metastatic breast cancer.

J Cancer Res Ther

December 2024

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People's Republic of China.

Article Synopsis
  • The study examines the effects of a combination therapy (apatinib and trastuzumab-based chemotherapy) on patients with primary trastuzumab resistance (PTR) in HER2-positive breast cancer.
  • A total of 20 PTR patients were treated, showing a clinical benefit rate of 55%, though no complete responses were observed, and median progression-free survival was 5.7 months.
  • While the treatment had manageable side effects, further research is recommended to better identify which PTR patients could potentially benefit from this therapy.
View Article and Find Full Text PDF

Sushi domain-containing protein 2 (SUSD2), a transmembrane protein containing a sushi motif, has been reported to have tumor-promoting functions in various types of cancer, including breast cancer. However, the regulatory mechanism of SUSD2 and its function in HER2-positive (HER2+) breast cancer have not been fully identified as yet. In this study, we explored the potential of targeting SUSD2 to overcome trastuzumab (TRZ) resistance in HER2+ breast cancer.

View Article and Find Full Text PDF

Background: A novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate (ADC) GQ1001 was assessed in patients with previously treated HER2 positive advanced solid tumors in a global multi-center phase Ia dose escalation trial.

Methods: In this phase Ia trial, a modified 3 + 3 study design was adopted during dose escalation phase. Eligible patients were enrolled, and GQ1001 monotherapy was administered intravenously every 3 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!