Among tight-junction proteins, claudins, which play a key role in paracellular transport across epithelia, claudins 1 to 5 are expressed in the intestine, and changes in their abundance and/or distribution are considered to contribute to various gastrointestinal diseases. We investigated, by reverse transcription-PCR, immunoblot, and immunofluorescence analyses, which other claudin species were expressed in the mouse intestine, and whether they showed unique expression profiles. Rabbit polyclonal antibodies against mouse claudin-8, claudin-12, and claudin-15 were generated, and their specificity was verified by immunoblotting using COS-7 cells transfected with individual claudin cDNAs. Claudin-7, -8, -12, -13, and -15 appeared to be expressed in the duodenum, jejunum, ileum, and/or colon with remarkable variations in the expression levels along the intestinal tract, and had distinct subcellular localization in the intestinal epithelium. In addition, claudin-13 and -15 exhibited gradients along the crypt-surface axis of the colon. By contrast, claudin-6, -9, -10, -11, -14, -16, -18, and -19 were not observed in the intestine. Our results indicate that five additional species of claudins have very complex expression patterns along and within the intestine, and that this may reflect differences in paracellular permeable properties, providing valuable resources for studying the significance of these claudins in gastrointestinal disorders. This manuscript contains online supplemental material available at http://www.jhc.org. Please visit this article online to view these materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1369/jhc.6A6944.2006 | DOI Listing |
Int J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:
The Shab family voltage-gated K channels (i.e., Kv2.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
ssp. is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete.
View Article and Find Full Text PDFNat Commun
January 2025
Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!