Intumescences or abnormal, non-pathogenic, blister-like protuberant growths, form on Eucalyptus globulus Labill. and, to a much lesser extent, Eucalyptus nitens (Deane and Maiden) Maiden leaves when plants are grown in a high relative humidity environment. We examined the histology of intumescences and their effects on leaf photosynthetic processes. Intumescences were induced by placing E. globulus and E. nitens seedlings in a relative humidity of 80% in a greenhouse for 5 days. Symptomatic and asymptomatic leaves of plants with intumescence development were compared with leaves of control plants. Light-saturated carbon dioxide (CO(2)) assimilation (A(max)) and responses of CO(2) assimilation (A) to varying intercellular CO(2) partial pressure (C(i)) were measured. Symptomatic and asymptomatic leaf samples were fixed and sectioned and cellular structure was examined. Intumescences greatly reduced the photosynthetic capacity of E. globulus leaves and were associated with reduced electron transport rate and ribulose bisphosphate (RuBP) regeneration capacity. Tissue necrotization and cellular collapse of the palisade mesophyll and deposition of phenolic compounds in the affected areas, probably reduced light penetration to photosynthesizing cells as well as reducing the amount of photosynthesizing tissue. Photosynthetic capacity of E. nitens was unaffected. The intumescences resembled simple lenticels, both morphologically and developmentally. To our knowledge, this is the first time that lenticel-like structures developed in response to environmental conditions have been described on leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/26.8.989DOI Listing

Publication Analysis

Top Keywords

lenticel-like structures
8
eucalyptus nitens
8
eucalyptus globulus
8
leaves plants
8
relative humidity
8
symptomatic asymptomatic
8
co2 assimilation
8
photosynthetic capacity
8
leaves
6
intumescences
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!