Anopheles gambiae lipophorin: characterization and role in lipid transport to developing oocyte.

Insect Biochem Mol Biol

Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive MSC 0425, Bethesda, MD 20892, USA.

Published: May 2006

Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here, we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), in the malaria vector mosquito Anopheles gambiae. We also describe the Lp-mediated lipid transfer to developing eggs and the distribution of the imported lipid in developing embryos. The density of the Lp complex was 1.135 g/ml with an apparent molecular weight of 630 kDa. It is composed of two major polypeptides, apoLp I (260 kDa) and apoLp II (74 kDa) and composed of 50% protein, 48% lipid and 2% carbohydrate (w/w). Hydrocarbon, cholesterol, phosphatidyl choline, phosphatidyl ethanolamine, cholesteryl ester and diacylglyceride were the major Lp-associated lipids. Using fluorescently tagged lipids, we observed patterns that suggest that in live developing oocytes, the Lp was taken up by a receptor-mediated endocytic process. Such process was blocked at low temperature and in the presence of excess unlabeled Lp, but not by bovine serum albumin. Imported Lp was segregated in the spherical yolk bodies (mean size 1.8 microm) and distributed evenly in the cortex of the oocyte. In embryonic larvae, before hatching, a portion of the fatty acid in vesicles was found evenly distributed along the body, whereas portion of phospholipids was accumulated in the intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2006.01.019DOI Listing

Publication Analysis

Top Keywords

anopheles gambiae
8
lipid transport
8
kda composed
8
lipid
5
gambiae lipophorin
4
lipophorin characterization
4
characterization role
4
role lipid
4
developing
4
transport developing
4

Similar Publications

The Anopheles maculipennis complex consists of several mosquito species, including some primary malaria vectors. Therefore, the presence of a species in a particular area significantly affects public health. In this study, 1252 mosquitoes were collected in northern Italy, representing four identified species of the Anopheles maculipennis complex (Anopheles daciae sp.

View Article and Find Full Text PDF

Novel isothermal nucleic acid amplification method for detecting malaria parasites.

Appl Microbiol Biotechnol

December 2024

Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.

Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination.

View Article and Find Full Text PDF

Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of s.l.

View Article and Find Full Text PDF

Introduction: Malaria caused by spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes.

View Article and Find Full Text PDF

Malaria is an infection caused by five different Plasmodium species. The most common are is more rarely reported and mostly has a benign course. We present a case of a 40-year-old male with a six-day history of headaches, chills, and fever who was initially evaluated in our emergency room, from where he was discharged after a negative workup for malaria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!