Conjugated linoleic acid (CLA) has been shown to enhance paracellular and transcellular Ca transport across human intestinal-like Caco-2 cell monolayers. The mechanisms of action, however, are still unclear. Therefore, this study investigated the molecular mechanisms underlying CLA-induced stimulation of Ca transport by use of preliminary microarray data together with more detailed and comprehensive quantitative reverse transcriptase-PCR analysis. While molecular expression of junctional adhesion molecule (JAM), ZO-2, ZO-3, claudin 2 and claudin 3 were unaltered, ZO-1, occludin, and claudin 4 were all up-regulated (1.6, 1.6, 2.4-fold, respectively; P<0.001-0.01) and claudin 1 down-regulated (2.5-fold; P<0.05) by trans-10, cis-12 CLA, which may underpin its effects on tight-junction function and paracellular Ca transport. On the other hand, expression of key genes involved in transcellular Ca transport (CaT1, ECaC1, calbindin D(9k), vitamin D receptor and PMCA) were unaffected by trans-10, cis-12 CLA. The mechanism by which CLA enhances transcellular Ca transport remains unclear.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2006.03.003DOI Listing

Publication Analysis

Top Keywords

conjugated linoleic
8
linoleic acid
8
transport human
8
human intestinal-like
8
intestinal-like caco-2
8
acid enhances
4
enhances transepithelial
4
transepithelial calcium
4
calcium transport
4
caco-2 cells
4

Similar Publications

Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Conjugated Linoleic Acid (CLA) Mitigates High-Fat Diet (HFD)-Induced Mammary Gland Development Impairment of Pubertal Mice via Regulating CD36 Palmitoylation and Downstream JNK-ERK Pathway.

J Agric Food Chem

January 2025

Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.

Conjugated linoleic acid (CLA) is known for antiobesity. However, the role of CLA in regulating high-fat diet (HFD)-impaired pubertal mammary gland development remains undefined. Here, pubertal female mice and HC11 cells were treated with HFD or palmitic acid (PA), supplemented with or without CLA, respectively.

View Article and Find Full Text PDF

The causal relationship between 233 metabolites and coronary atherosclerosis: a Mendelian randomization study.

Front Cardiovasc Med

December 2024

National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Objective: To investigate the causal relationship between 233 newly reported metabolites and coronary atherosclerosis through Mendelian randomization analysis.

Methods: Five different methods were used to perform Mendelian randomization analysis on the 233 metabolites and coronary atherosclerosis, with inverse variance weighting as the primary result, supplemented by other methods.

Results: The analysis identified that certain metabolites increase the susceptibility risk of coronary atherosclerosis, including: Total fatty acids (OR = 1.

View Article and Find Full Text PDF

Detailed DFT studies of H and C NMR chemical shifts of hydroxy secondary oxidation products of various geometric isomers of conjugated linolenic acids methyl esters are presented. Several low energy conformers were identified for model compounds of the central dienenol OH moiety, which were found to be practically independent on the various functionals and basis sets used. This greatly facilitated the minimization process of the geometric isomers of conjugated linolenic acids methyl esters.

View Article and Find Full Text PDF

Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of this work was to evaluate which material/temperature/light solutions better preserve HSO quality during its shelf life and to test NIR as a rapid, non-destructive technique for monitoring oxidation phenomena. Futura 75 hemp seeds were cold-pressed; the oil was packed into 20 mL vials of four different materials (polypropylene, clear glass, amber glass, and amber glass coated with aluminum foil) and stored for 270 days at 25 °C under diffused light and at 10 °C in dark conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!